Advertisement

Sirolimus blocks the accumulation of hyaluronan (HA) by arterial smooth muscle cells and reduces monocyte adhesion to the ECM

      Abstract

      Sirolimus (SRL), an inhibitor of human arterial smooth muscle cell (ASMC) proliferation and migration, prevents in-stent restenosis (ISR). Little is known about the effect of SRL on the extracellular matrix (ECM) component, hyaluronan, a key macromolecule in neointimal hyperplasia and inflammation. In this study, we investigated SRL regulation of the synthesis of hyaluronan by cultured human ASMC and the effect of SRL on hyaluronan mediated monocyte adhesion to the ECM. Hyaluronan production on a per cell basis was significantly inhibited by SRL at 4 days and remained so through 10 days. This reduction was correlated with reduced levels of hyaluronan synthase mRNAs while hyaluronan degradation rates were unchanged. Poly I:C, a viral mimetic, caused increased hyaluronan accumulation by ASMC cell layers and this increase was inhibited by SRL. The inhibition was paralleled by a reduction in hyaluronan-dependent monocyte adhesion to the ECM. This study demonstrates that SRL not only regulates the proliferation of ASMC but reduces the production of hyaluronan by these cells. This alteration in ECM composition results in reduced monocyte adhesion to the ECM in cultures of ASMC. Alterations in hyaluronan accumulation may contribute to the inhibition of ISR that is achieved by SRL.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sigwart U.
        • Puel J.
        • Mirkovitch V.
        • Joffre F.
        • Kappenberger L.
        Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty.
        N Engl J Med. 1987; 316: 701-706
        • Serruys P.W.
        • de Jaegere P.
        • Kiemeneij F.
        • et al.
        A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group.
        N Engl J Med. 1994; 331: 489-495
        • Fischman D.L.
        • Leon M.B.
        • Baim D.S.
        • et al.
        A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators.
        N Engl J Med. 1994; 331: 496-501
        • Hoffmann R.
        • Mintz G.S.
        • Dussaillant G.R.
        • et al.
        Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study.
        Circulation. 1996; 94: 1247-1254
        • Chung I.M.
        • Gold H.K.
        • Schwartz S.M.
        • Ikari Y.
        • Reidy M.A.
        • Wight T.N.
        Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment.
        J Am Coll Cardiol. 2002; 40: 2072-2081
        • Farb A.
        • Kolodgie F.D.
        • Hwang J.Y.
        • et al.
        Extracellular matrix changes in stented human coronary arteries.
        Circulation. 2004; 110: 940-947
        • Riessen R.
        • Wight T.N.
        • Pastore C.
        • Henley C.
        • Isner J.M.
        Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries.
        Circulation. 1996; 93: 1141-1147
        • Karnik S.K.
        • Brooke B.S.
        • Bayes-Genis A.
        • et al.
        A critical role for elastin signaling in vascular morphogenesis and disease.
        Development. 2003; 130: 411-423
        • Evanko S.P.
        • Angello J.C.
        • Wight T.N.
        Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells.
        Arterioscler Thromb Vasc Biol. 1999; 19: 1004-1013
        • Fischer J.W.
        • Kinsella M.G.
        • Clowes M.M.
        • Lara S.
        • Clowes A.W.
        • Wight T.N.
        Local expression of bovine decorin by cell-mediated gene transfer reduces neointimal formation after balloon injury in rats.
        Circ Res. 2000; 86: 676-683
        • Wight T.N.
        • Lara S.
        • Riessen R.
        • Le Baron R.
        • Isner J.
        Selective deposits of versican in the extracellular matrix of restenotic lesions from human peripheral arteries.
        Am J Pathol. 1997; 151: 963-973
        • Matsuura R.
        • Isaka N.
        • Imanaka-Yoshida K.
        • Yoshida T.
        • Sakakura T.
        • Nakano T.
        Deposition of PG-M/versican is a major cause of human coronary restenosis after percutaneous transluminal coronary angioplasty.
        J Pathol. 1996; 180: 311-316
        • LeBaron R.G.
        • Zimmermann D.R.
        • Ruoslahti E.
        Hyaluronate binding properties of versican.
        J Biol Chem. 1992; 267: 10003-10010
        • Chang Y.
        • Yanagishita M.
        • Hascall V.C.
        • Wight T.N.
        Proteoglycans synthesized by smooth muscle cells derived from monkey (Macaca nemestrina) aorta.
        J Biol Chem. 1983; 258: 5679-5688
        • Wight T.N.
        • Merrilees M.J.
        Proteoglycans in atherosclerosis and restenosis: key roles for versican.
        Circ Res. 2004; 94: 1158-1167
        • Majors A.K.
        • Austin R.C.
        • de la Motte C.A.
        • et al.
        Endoplasmic reticulum stress induces hyaluronan deposition and leukocyte adhesion.
        J Biol Chem. 2003; 278: 47223-47231
        • Bauters C.
        • Van Belle E.
        • McFadden E.
        • Lablanche J.M.
        • Bertrand M.E.
        Restenosis after angioplasty.
        Arch Mal Coeur Vaiss. 1999; 92: 1579-1582
        • Suzuki T.
        • Kopia G.
        • Hayashi S.
        • et al.
        Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model.
        Circulation. 2001; 104: 1188-1193
        • Klugherz B.D.
        • Llanos G.
        • Lieuallen W.
        • et al.
        Twenty-eight-day efficacy and phamacokinetics of the sirolimus-eluting stent.
        Coron Artery Dis. 2002; 13: 183-188
        • Sousa J.E.
        • Costa M.A.
        • Abizaid A.
        • et al.
        Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasound study.
        Circulation. 2001; 103: 192-195
        • Sousa J.E.
        • Costa M.A.
        • Abizaid A.C.
        • et al.
        Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up.
        Circulation. 2001; 104: 2007-2011
        • Morice M.C.
        • Serruys P.W.
        • Sousa J.E.
        • et al.
        A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization.
        N Engl J Med. 2002; 346: 1773-1780
        • Gummert J.F.
        • Ikonen T.
        • Morris R.E.
        Newer immunosuppressive drugs: a review.
        J Am Soc Nephrol. 1999; 10: 1366-1380
        • Sehgal S.N.
        Rapamune (Sirolimus, rapamycin): an overview and mechanism of action.
        Ther Drug Monit. 1995; 17: 660-665
        • Marx S.O.
        • Jayaraman T.
        • Go L.O.
        • Marks A.R.
        Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells.
        Circ Res. 1995; 76: 412-417
        • Poon M.
        • Marx S.O.
        • Gallo R.
        • Badimon J.J.
        • Taubman M.B.
        • Marks A.R.
        Rapamycin inhibits vascular smooth muscle cell migration.
        J Clin Invest. 1996; 98: 2277-2283
        • Sehgal S.N.
        Sirolimus: its discovery, biological properties, and mechanism of action.
        Transplant Proc. 2003; 35: S7-S14
        • Roque M.
        • Reis E.D.
        • Cordon-Cardo C.
        • et al.
        Effect of p27 deficiency and rapamycin on intimal hyperplasia: in vivo and in vitro studies using a p27 knockout mouse model.
        Lab Invest. 2001; 81: 895-903
        • Terada N.
        • Lucas J.J.
        • Szepesi A.
        • Franklin R.A.
        • Domenico J.
        • Gelfand E.W.
        Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cycle.
        J Cell Physiol. 1993; 154: 7-15
        • Chung I.M.
        • Gold H.K.
        • Schwartz S.M.
        • Ikari Y.
        • Reidy M.A.
        • Wight T.N.
        Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment.
        J Am Coll Cardiol. 2002; 40: 2072-2081
        • Evanko S.P.
        • Johnson P.Y.
        • Braun K.R.
        • Underhill C.B.
        • Dudhia J.
        • Wight T.N.
        Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells.
        Arch Biochem Biophys. 2001; 394: 29-38
        • Wilkinson T.S.
        • Potter-Perigo S.
        • Tsoi C.
        • Altman L.C.
        • Wight T.N.
        Pro- and anti-inflammatory factors cooperate to control hyaluronan synthesis in lung fibroblasts.
        Am J Respir Cell Mol Biol. 2004; 31: 92-99
        • Underhill C.B.
        Hyaluronan is inversely correlated with the expression of CD44 in the dermal condensation of the embryonic hair follicle.
        J Invest Dermatol. 1993; 101: 820-826
        • Wilkinson T.S.
        • Bressler S.L.
        • Evanko S.P.
        • Braun K.R.
        • Wight T.N.
        Overexpression of hyaluronan synthases alters vascular smooth muscle cell phenotype and promotes monocyte adhesion.
        J Cell Physiol. 2006; 206: 378-385
        • de La Motte C.A.
        • Hascall V.C.
        • Calabro A.
        • Yen-Lieberman B.
        • Strong S.A.
        Mononuclear leukocytes preferentially bind via CD44 to hyaluronan on human intestinal mucosal smooth muscle cells after virus infection or treatment with poly(I:C).
        J Biol Chem. 1999; 274: 30747-30755
        • de Belder A.N.
        • Wik K.O.
        Preparation and properties of fluorescein-labelled hyaluronate.
        Carbohydrate Res. 1975; 44: 251-257
        • Jain M.
        • He Q.
        • Lee W.S.
        • et al.
        Role of CD44 in the reaction of vascular smooth muscle cells to arterial wall injury.
        J Clin Invest. 1996; 98: 877
        • Toole B.P.
        Hyaluronan: from extracellular glue to pericellular cue.
        Nat Rev Cancer. 2004; 4: 528-539
      1. Buerke M, Guckenbiehl M, Schwertz H, et al. Intramural delivery of Sirolimus prevents vascular remodeling following balloon injury. Biochim Biophys Acta, 2006, in press.

        • Park J.
        • Ha H.
        • Ahn H.J.
        • et al.
        Sirolimus inhibits platelet-derived growth factor-induced collagen synthesis in rat vascular smooth muscle cells.
        Transplant Proc. 2005; 37: 3459-3462
        • Svegliati-Baroni G.
        • Ridolfi F.
        • Di Sario A.
        • et al.
        Intracellular signaling pathways involved in acetaldehyde-induced collagen and fibronectin gene expression in human hepatic stellate cells.
        Hepatology. 2001; 33: 1130-1140
        • Poulalhon N.
        • Farge D.
        • Roos N.
        • et al.
        Modulation of collagen and MMP-1 gene expression in fibroblasts by the immunosuppressive drug rapamycin: a direct role as an anti-fibrotic agent?.
        J Biol Chem. 2006; 281: 33045-33052
        • Starkman B.G.
        • Cravero J.D.
        • Delcarlo M.
        • Loeser R.F.
        IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK.
        Biochem J. 2005; 389: 723-729
        • Sun J.
        • Marx S.O.
        • Chen H.J.
        • Poon M.
        • Marks A.R.
        • Rabbani L.E.
        Role for p27(Kip1) in vascular smooth muscle cell migration.
        Circulation. 2001; 103: 2967-2972
        • Marks A.R.
        Rapamycin: signaling in vascular smooth muscle.
        Transplant Proc. 2003; 35: S231-S233
        • Gingras A.C.
        • Raught B.
        • Sonenberg N.
        Regulation of translation initiation by FRAP/mTOR.
        Genes Dev. 2001; 15: 807-826
        • van den Boom M.
        • Sarbia M.
        • von Wnuck Lipinski K.
        • et al.
        Differential regulation of hyaluronic acid synthase isoforms in human saphenous vein smooth muscle cells: possible implications for vein graft stenosis.
        Circ Res. 2006; 98: 36-44
        • de La Motte C.
        • Hascall V.
        • Drazbe J.
        • Strong S.
        Poly I:C induces mononuclear leukocyte adhesive hyaluronan structures on colon smooth muscle cells: I alpha I and versican facilitate adhesion.
        in: Kennedy J.F. Phillips G.O. Williams P.A. Hascall V.C. Hyaluronan, volume 1, Chemical, Biochemical and Biological Aspects. Woodhead Publishing Ltd., Cambridge2002 (pp. 381–388)
        • de la Motte C.A.
        • Hascall V.C.
        • Drazba J.
        • Bandyopadhyay S.K.
        • Strong S.A.
        Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function.
        Am J Pathol. 2003; 163: 121-133
        • Hascall V.C.
        • Majors A.K.
        • De La Motte C.A.
        • et al.
        Intracellular hyaluronan: a new frontier for inflammation?.
        Biochim Biophys Acta. 2004; 1673: 3-12
        • Day A.J.
        • de la Motte C.A.
        Hyaluronan cross-linking: a protective mechanism in inflammation?.
        Trends Immunol. 2005; 26: 637-643
        • Corrado E.
        • Rizzo M.
        • Tantillo R.
        • et al.
        Markers of inflammation and infection influence the outcome of patients with baseline asymptomatic carotid lesions: a 5-year follow-up study.
        Stroke. 2006; 37: 482-486
        • Ismail A.
        • Khosravi H.
        • Olson H.
        The role of infection in atherosclerosis and coronary artery disease: a new therapeutic target.
        Heart Dis. 1999; 1: 233-240
        • Vink A.
        • de Kleijn D.P.
        • Pasterkamp G.
        Functional role for toll-like receptors in atherosclerosis and arterial remodeling.
        Curr Opin Lipidol. 2004; 15: 515-521
        • Sen G.C.
        • Sarkar S.N.
        Transcriptional signaling by double-stranded RNA: role of TLR3.
        Cytokine Growth Factor Rev. 2005; 16: 1-14
        • Monslow J.
        • Williams J.D.
        • Norton N.
        • et al.
        The human hyaluronan synthase genes: genomic structures, proximal promoters and polymorphic microsatellite markers.
        Int J Biochem Cell Biol. 2003; 35: 1272-1283
        • Giordano A.
        • Avellino R.
        • Ferraro P.
        • Romano S.
        • Corcione N.
        • Romano M.F.
        Rapamycin antagonizes NF-{kappa}B nuclear translocation activated by TNF-{alpha} in primary vascular smooth muscle cells and enhances apoptosis.
        Am J Physiol Heart Circ Physiol. 2006;
        • Thompson J.E.
        • Thompson C.B.
        Putting the rap on Akt.
        J Clin Oncol. 2004; 22: 4217-4226
        • Misra S.
        • Ghatak S.
        • Toole B.P.
        Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2.
        J Biol Chem. 2005; 280: 20310-20315
        • Martin K.A.
        • Rzucidlo E.M.
        • Merenick B.L.
        • et al.
        The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation.
        Am J Physiol Cell Physiol. 2004; 286: C507-C517
        • Guerin P.
        • Sauzeau V.
        • Rolli-Derkinderen M.
        • et al.
        Stent implantation activates RhoA in human arteries: inhibitory effect of rapamycin.
        J Vasc Res. 2005; 42: 21-28
        • Bi D.
        • Nishimura J.
        • Niiro N.
        • Hirano K.
        • Kanaide H.
        Contractile properties of the cultured vascular smooth muscle cells: the crucial role played by RhoA in the regulation of contractility.
        Circ Res. 2005; 96: 890-897
        • Merrilees M.J.
        • Campbell J.H.
        • Spanidis E.
        • Campbell G.R.
        Glycosaminoglycan synthesis by smooth muscle cells of differing phenotype and their response to endothelial cell conditioned medium.
        Atherosclerosis. 1990; 81: 245-254
        • Anwar K.N.
        • Fazal F.
        • Malik A.B.
        • Rahman A.
        RhoA/Rho-associated kinase pathway selectively regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via activation of I kappa B kinase beta and phosphorylation of RelA/p65.
        J Immunol. 2004; 173: 6965-6972