Advertisement

Social stress profoundly affects lipid metabolism: Over-expression of SR-BI in liver and changes in lipids and lipases in plasma and tissues of stressed mice

      Abstract

      We examined the effect of chronic social stress, similar to that endured by humans, on lipid metabolism of mice. The activity of the lipoprotein lipase (LPL) enzyme increased in adrenals, while in plasma it diminished significantly. Hepatic lipase (HL) was strongly affected in liver and adrenal glands, increasing four-fold and three-fold, respectively. At the same time, scavenger receptor class-B type-I (SR-BI), which are considered the high-density lipoprotein (HDL) receptor in the liver, increased significantly.
      Although the adrenals do not synthesise HL, the increase in HL may facilitate the uptake of HDL cholesterol for the synthesis of corticoids, which increase significantly following chronic stress. The volume of adrenal glands in control animals was significantly higher than in stressed animals (1.23 ± 0.12 mm3 versus 0.29 ± 0.06 mm3, p < 0.001), corresponding with the weight difference of these organs. Medulla volume was also different in the two groups (0.27 ± 0.10 mm3 versus 0.04 ± 0.02 mm3, p < 0.05). Despite this, corticosterone in plasma was significantly higher in stressed animals.
      Our results shows, for the first time, the effect of chronic social stress on lipid metabolism in general, and in particular on the SR-BI receptor and HL, which is directly involved in cholesterol reverse transport.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Camps L.
        • Reina M.
        • Llobera M.
        • Vilaró S.
        • Olivecrona T.
        Lipoprotein lipase: cellular origin and functional distribution.
        Am J Physiol. 1990; 258: 673-681
        • Laposata E.A.
        • Laboda H.M.
        • Strauss J.F.
        Hepatic lipase. Synthesis, processing, and secretion by isolated rat hepatocytes.
        J Biol Chem. 1987; 262: 5333-5338
        • Galan X.
        • Peinado-Onsurbe J.
        • Julve J.
        • et al.
        Inactive hepatic lipase in rat plasma.
        J Lipid Res. 2003; 44: 2250-2256
        • Acton S.L.
        • Kozarsky K.F.
        • Rigotti A.
        The HDL receptor SR-BI: a new therapeutic target for atherosclerosis?.
        Mol Med Today. 1999; 5: 518-524
        • Trigatti B.L.
        • Rigotti A.
        • Braun A.
        Cellular physiological roles of SR-BI, a lipoprotein receptor which mediates selective lipid uptake.
        Biochim Biophys Acta. 2000; 1529: 276-286
        • Mardones P.
        • Quinones V.
        • Amigo L.
        • et al.
        Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice.
        J Lipid Res. 2001; 42: 170-180
        • Martinez M.
        • Calvo-Torrent A.
        • Pico-Alfonso M.A.
        Social defeat and subordination as models of social stress in laboratory rodents: a review.
        Aggr Behav. 1998; 24: 241-256
        • Koolhaas J.M.
        • De Boer S.F.
        • De Rutter A.J.
        • Meerlo P.
        • Sgoifo A.
        Social stress in rats and mice.
        Acta Physiol Scand Suppl. 1997; 640: 69-72
        • Kudryavtseva N.N.
        A sensory contact model for the study of aggressive and submissive behavior in male mice.
        Aggr Behav. 1991; 17: 285-291
        • Brindley D.N.
        • McCann B.S.
        • Niaura R.
        • Stoney C.M.
        • Suarez E.C.
        Stress and lipoprotein metabolism: modulators and mechanisms.
        Metabolism. 1993; 42: 3-15
        • Ricart-Jane D.
        • Rodriguez-Sureda V.
        • Benavides A.
        • Peinado-Onsurbe J.
        • Lopez-Tejero M.D.
        • Llobera M.
        Immobilization stress alters intermediate metabolism and circulating lipoproteins in the rat.
        Metabolism. 2002; 51: 925-931
        • Ricart-Jane D.
        • Cejudo-Martín P.
        • Peinado-Onsurbe J.
        • Lopez-Tejero M.D.
        • Llobera M.
        Changes in lipoprotein lipase modulate tissue energy supply during stress.
        J Appl Physiol. 2005; 99: 1343-1351
        • Rosmond R.
        • Dallman M.F.
        • Bjorntorp P.
        Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities.
        J Clin Endocrinol Metab. 2003; 86: 1853-1859
        • Sanchez O.
        • Arnau A.
        • Pareja M.
        • Poch E.
        • Ramirez I.
        • Soley M.
        Acute stress-induced tissue injury in mice: differences between emotional and social stress.
        Cell Stress Chaperones. 2002; 7: 36-46
        • Lang C.M.
        Effects of psychic stress on atherosclerosis in the squirrel monkey, Saimiri sciureus.
        Proc Soc Exp Biol Med. 1967; 126: 30-34
        • Bradford M.M.
        A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
        Anal Biochem. 1976; 72: 248-254
        • Julve J.
        • Robert M.Q.
        • Llobera M.
        • Peinado-Onsurbe J.
        Hormonal regulation of lipoprotein lipase activity from 5-day-old rat hepatocytes.
        Mol Cell Endocrinol. 1996; 116: 97-104
        • Ehnholm C.
        • Huttunen J.K.
        • Kinnunen P.
        • Miettinen T.A.
        • Nik-kilä E.A.
        Effect of oxandrolone treatment on the activity of lipoprotein lipase, hepatic lipase and phospholipase A1 of human postheparin plasma.
        New Engl J Med. 1975; 292: 1314-1317
        • Rodriguez-Sureda V.
        • Julve J.
        • Llobera M.
        • Peinado-Onsurbe J.
        Ultracentrifugation micromethod for preparation of small experimental animal lipoproteins.
        Anal Biochem. 2002; 303: 73-77
        • Hara A.
        • Radin N.S.
        Lipid extraction of tissues with a low-toxicity solvent.
        Anal Biochem. 1978; 90: 420-426
        • Rodríguez-Sureda V.
        • Peinado-Onsurbe J.
        A procedure for measuring triacylglyceride and cholesterol content using a small amount of tissue.
        Anal Biochem. 2005; 343: 277-282
        • Draper H.H.
        • Hadley M.
        Malondialdehyde determination as index of lipid peroxidation.
        Meth Enzymol. 1990; 186: 421-431
        • Reaven E.P.
        • Kolterman O.G.
        • Reaven G.M.
        Ultrastructural and physiological evidence for corticosteroid-induced alterations in hepatic production of very low density lipoprotein particles.
        J Lipid Res. 1974; 15: 74-83
        • Armario A.
        • Castellanos J.M.
        A simple procedure for direct corticosterone radioimmunoassay in the rat.
        Rev Esp Fisiol. 1984; 40: 437-441
        • Brown E.T.
        • Umino Y.
        • Loi T.
        • Solessio E.
        • Barlow R.
        Anesthesia can cause sustained hyperglycemia in C57/BL6J mice.
        Visual Neurosci. 2005; 22: 615-618
        • Bartos L.
        • Brain P.F.
        Influence of body weight on dominance and aggression in groups of male Swiss strain mice.
        Anim Technol. 1994; 45: 161-168
        • Kaliste-Korhonen E.
        • Eskola S.
        Fighting in NIH/S male mice: consequences for behaviour in resident-intruder tests and physiological parameters.
        Lab Anim. 2000; 34: 89-98
        • Rebuffé-Scrive M.
        • Walsh U.A.
        • McEwen B.
        • Rodin J.
        Effect of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism.
        Physiol Behav. 1992; 52: 583-590
        • Gafvels M.
        • Vilaró S.
        • Olivecrona T.
        Lipoprotein lipase in guinea-pig adrenals: activity, mRNA, immunolocalization and regulation by ACTH.
        J Endocrinol. 1991; 129: 213-220
        • Schoonderwoerd K.
        • Hülsmann W.C.
        • Jansen H.
        Regulation of liver lipase. I. Evidence for several regulatory sites, studied in corticotrophin-treated rats.
        Biochim Biophys Acta. 1983; 754: 279-283
        • Armario A.
        • Lopez-Calderón A.
        • Jolin T.
        • Balash J.
        Response of anterior pituitary hormones to chronic stress. The specificity of adaptation.
        Neurosci Biobehav Rev. 1986; 10: 245-250
        • Wang N.
        • Weng W.
        • Breslow J.L.
        • Tall A.R.
        Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control.
        J Biol Chem. 1996; 271: 1001-1004
        • Jolley C.D.
        • Woollett L.A.
        • Turley S.D.
        • Dietschy J.M.
        Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration.
        J Lipid Res. 1998; 39: 2143-2149
        • Peinado-Onsurbe J.
        • Soler C.
        • Galan X.
        • et al.
        Involvement of catecholamines in the effect of fasting on hepatic endothelial lipase activity in the rat.
        Endocrinology. 1991; 129: 2599-2606
        • Julve J.
        • Llobera M.
        • Peinado-Onsurbe J.
        The effects of catecholamines and sex steroid hormones on the heparin releasable hepatic lipase activity from hepatocytes of 5-day old rats.
        Endocrinol Metab. 1996; 3: 189-195
        • Jansen H.
        • Schoonderwoerd K.
        • Baggen M.G.A.
        • Greebs W.J.D.
        The effect of corticotrophin on liver-type lipase activity in adrenals, liver and high-density lipoprotein subfractions in the rat.
        Biochim Biophys Acta. 1993; 753: 205-212
        • Nilsson A.
        • Hjelte L.
        • Nilsson-Ehle P.
        • Strandvik B.
        Adaptive regulation of lipoprotein lipase and salt-resistant lipase activities in essential fatty acid deficiency: an experimental study in the rat.
        Metabolism. 1990; 39: 1305-1308
        • Karackattu S.L.
        • Trigatti B.
        • Krieger M.
        Hepatic lipase deficiency delays atherosclerosis myocardial infarction and cardiac dysfunction and extends lifespan in SR-BI/apolipoprotein E double knockout mice.
        Arteriosc Thromb Vasc Biol. 2006; 26: 48-54
        • Lavin-Palmieri M.
        • Sánchez-Serrano D.
        Plasma lipid levels and heart lipoprotein lipase activity in mice under social stress.
        Cor Vasa. 1984; 26: 304-308
        • Stoney C.M.
        • West S.G.
        • Hughes J.W.
        • et al.
        Acute psychological stress reduces plasma triglyceride clearance.
        Psychophysiology. 2002; 39: 80-85
        • O’Donnell L.
        • O’Meara N.
        • Owens D.
        • Johnson A.
        • Collins P.
        • Tomkin G.
        Plasma catecholamines and lipoproteins in chronic psychological stress.
        J R Soc Med. 1987; 80: 339-342
        • Seckin S.
        • Alptekin N.
        • Dogru-Abbasoglu S.
        • Kocak-Toker N.
        • Toker G.
        • Uysal M.
        The effect of chronic stress on hepatic and gastric lipid peroxidation in long-term depletion of glutathione in rats.
        Pharmacol Res. 1997; 36: 55-57