Advertisement
Research Article| Volume 195, ISSUE 1, P66-74, November 2007

Download started.

Ok

Reduced atherosclerosis in chow-fed mice expressing high levels of a catalytically inactive human hepatic lipase

      Abstract

      Increased expression of catalytically inactive hepatic lipase (ciHL) lowers remnants and low-density lipoproteins (LDL) and may reduce atherosclerosis in mice lacking both LDLreceptors (LDLR) and murine (m) HL. However, in a previous study, ciHL expression failed to reduce atherosclerosis but increased liver fat accumulation after a 3-month high-fat diet, suggesting that diet-induced metabolic changes compromised the antiatherogenic effects of ciHL. Therefore, we hypothesized that reduced dietary fat would reduce atherosclerosis in ciHL expressing mice. Mice lacking both LDLR and mHL, alone, or expressing ciHL were fed a low-fat (chow) diet for 9 months to match the cumulative cholesterol exposure resulting from a 3-month high-fat diet. Plasma lipids and lipoproteins as well as atherosclerosis were determined at sacrifice. Also, liver expression of receptors and proteins contributing to cholesterol delivery including the LDLreceptor related protein (LRP), scavenger receptor (SR)-B1 and apoE were determined. At 9 months, ciHL expression reduced plasma cholesterol by ∼20% and atherosclerosis by 79% (from 2.67 ± 0.61% of aortic surface, Ldlr−/−hl−/−, n = 9, to 0.55 ± 0.32% of aortic surface, Ldlr−/−hl−/−ciHL, n = 7, P = 0.01). Also, LRP-expression increased ∼4-fold, whereas SR-B1 and apoE remained unchanged.
      These results demonstrate that ciHL expression reduces atherosclerosis. Also, these results demonstrate that ciHL increases LRP expression and suggest increased LRP-mediated lipoprotein clearance as a pathway for ciHL-mediated atherosclerosis reduction.

      Abbreviations:

      HL (Hepatic lipase), LDL (Low density lipoprotein), HDL (High density lipoprotein), LDLR (LDLreceptor), LRP (LDLreceptor related protein), SR-B1 (Scavenger receptor B1), ORO (Oil Red O), TBS (Tris buffered saline), HRP (Horse radish peroxidase)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brunzell J.D.
        • Deeb S.S.
        Familial lipoprotein lipase deficiency, apoC-II deficiency and hepatic lipase deficiency.
        in: Scriver C.R. The metabolic and molecular bases of inherited disease. McGraw-Hill Medical Publishing Company, New York2001: 2789-2816
        • Jansen H.
        • Verhoeven A.J.M.
        • Sijbrands E.J.G.
        Hepatic lipase: a pro-or anti-atherogenic protein?.
        J Lipid Res. 2002; 43: 1352-1362
        • Dichek H.L.
        • et al.
        Overexpression of hepatic lipase in transgenic mice decreases apolipoprotein B-containing and high density lipoproteins.
        J Biol Chem. 1998; 273: 1896-1903
        • Santamarina-Fojo S.
        • Haudenschild C.
        • Amar M.
        The role of hepatic lipase in lipoprotein metabolism and atherosclerosis.
        Curr Opin Lipidol. 1998; 9: 211-219
        • Connelly P.W.
        The role of hepatic lipase in lipoprotein metabolism.
        Clin Chim Acta. 1999; 286: 243-255
        • Krapp A.
        • et al.
        Hepatic lipase mediates the uptake of chylomicrons and β-VLDL into cells via the LDL receptor-related protein.
        J Lipid Res. 1996; 37: 926-936
        • Ji Z.-S.
        • et al.
        Heparan sulfate proteoglycans participate in hepatic lipase- and apolipoprotein E-mediated binding and uptake of plasma lipoproteins, including high density lipoproteins.
        J Biol Chem. 1997; 272: 31285-31292
        • Amar M.J.
        • et al.
        Hepatic lipase facilitates the selective uptake of cholesteryl esters from remnant lipoproteins in apoE-deficient mice.
        J Lipid Res. 1998; 39: 2436-2442
        • Swarnakar S.
        • Temel R.E.
        • Connelly M.A.
        • Azhar S.
        • Williams D.L.
        Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester.
        J Biol Chem. 1999; 274: 29733-29739
        • Connelly M.A.
        • Williams D.L.
        SR-B1 and cholesterol uptake into steroidogenic cells.
        Trends Endocrinol Metab. 2003; 14: 467-472
        • Santamarina-Fojo S.
        • Gonzalez-Navarro H.
        • Freeman L.
        • Wagner E.
        • Nong Z.
        Hepatic lipase, lipoprotein metabolism, and atherogenesis.
        Arterioscler Thromb Vase Biol. 2004; 24: 1750-1758
        • Krauss R.M.
        Relationship of intermediate and low-density lipoprotein subspecies to risk of coronary artery disease.
        Am Heart J. 1987; 113: 578-582
        • Zambon A.
        • Austin M.A.
        • Brown B.G.
        • Hokanson J.E.
        • Brunzell J.B.
        Effect of hepatic lipase on LDL in normal men and those with coronary artery disease.
        Arterioscler Thromb Vasc Biol. 1993; 13: 147-153
        • Kuusi T.
        • Saarinen P.
        • Nikkilä E.A.
        Evidence for the role of hepatic endothelial lipase in the metabolism of plasma high density lipoprotein2 in man.
        Atherosclerosis. 1980; 36: 589-593
        • Deeb S.S.
        • Zambon A.
        • Carr M.C.
        • Ayyobi A.F.
        • Brunzell J.B.
        Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender and diet.
        J Lipid Res. 2003; 44: 1279-1286
        • Mezdour H.
        • et al.
        Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apolipoprotein E-deficient mice.
        J Biol Chem. 1997; 272: 13570-13575
        • Nong Z.
        • Gonzalez-Navarro H.
        • Amar M.
        • et al.
        Hepatic lipase expression in macrophages contributes to atherosclerosis in apoE-deficient and LCAT-transgenic mice.
        J Clin Invest. 2003; 112: 367-378
        • Karackattu S.L.
        • Trigatti B.
        • Krieger M.
        Hepatic lipase deficiency delays atherosclerosis, myocardial infarction, and cardiac dysfunction and extends lifespan in SR-BI/apolipoprotein E double knockout mice.
        Arterioscler Thromb Vase Biol. 2006; 26: 548-554
        • Shirai K.
        • Barnhart R.L.
        • Jackson R.L.
        Hydrolysis of human plasma high density lipoprotein2-phospholipids and triglycerides by hepatic lipase.
        Biochem Biophys Res Commun. 1981; 100: 591-599
        • Barrans A.
        • et al.
        Hepatic lipase induces the formation of pre-β1 high density lipoprotein (HDL) from triacylglylcerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases.
        J Biol Chem. 1994; 269: 11572-11577
        • Busch S.J.
        • et al.
        Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice.
        J Biol Chem. 1994; 269: 16376-16382
        • Dichek H.L.
        • Qian K.
        • Agrawal N.
        Divergent effects of the catalytic and bridging functions of hepatic lipase on atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2004; 24: 1696-1702
        • Gaw A.
        • Mancini F.P.
        • Ishibashi S.
        Rapid genotyping of low density lipoprotein receptor knockout mice using a polymerase chain reaction technique.
        Lab Anim. 1995; 29: 447-449
        • Dichek H.L.
        • Qian K.
        • Agrawal N.
        The bridging function of hepatic lipase clears plasma cholesterol in LDL receptor-deficient “apoB-48-only” and “apoB- 100-only” mice.
        J Lipid Res. 2004; 45: 551-560
        • Véniant M.M.
        • et al.
        Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100.
        J Clin Invest. 1997; 100: 180-188
        • Rossmeisl M.
        • Rim J.S.
        • Koza R.A.
        • Kozak L.P.
        Variation in Type 2 Diabetes-related traits in mouse strains susceptible to diet-induced obesity.
        Diabetes. 2003; 52: 1958-1966
        • Salmon D.M.
        • Flatt J.P.
        Effect of dietary fat on the incidence of obesity among ad libitum fed mice.
        Int J Obesity. 1985; 9: 443-449
        • Folch J.
        • Lees M.
        • Stanley G.H.
        A simple method for the isolation and purification of total lipids from animal tissues.
        J Biol Chem. 1957; 226: 497-509
        • Brown M.S.
        • Faust J.R.
        • Goldstein J.L.
        Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts.
        J Clin Invest. 1975; 55: 783-793
        • Horobi R.W.
        Conn's biological stains: a handbook of dyes, stains, and fluorochromes for use in biology and medicine.
        Bios Scientific Publisher, 2002
        • Bjorkhem I.
        • Boberg K.M.
        • Leitersdorf E.
        Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol.
        in: Scriver C.R. The metabolic and molecular bases of inherited disease. McGraw-Hill Medical Publishing Company, New York2001: 2961-2988
        • Dichek H.L.
        • Agrawal N.
        • El Andaloussi N.
        • Qian K.
        Attenuated corticosterone response to chronic ACTH stimulation in hepatic lipase-deficient mice: evidence for a role for hepatic lipase in adrenal physiology.
        Am J Physiol Endocrinol Metab. 2006; 290: E908-E915
        • Dichek H.L.
        • et al.
        Hepatic lipase overexpression lowers remnant and LDL levels by a noncatalytic mechanism in LDL receptor-deficient mice.
        J Lipid Res. 2001; 42: 201-210
        • Chappell D.A.
        • Medh J.D.
        Receptor-mediated mechanisms of lipoprotein remnant catabolism.
        Prog Lipid Res. 1998; 37: 393-422
        • Kowal R.C.
        • et al.
        Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins.
        Proc Natl Acad Sci USA. 1989; 86: 5810-5814
        • Ji Z.-S.
        • et al.
        Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans.
        J Biol Chem. 1994; 269: 2764-2772
        • Kounnas M.Z.
        • et al.
        The cellular internalization and degradation of hepatic lipase is mediated by low density lipoprotein receptor-related protein and requires cell surface proteoglycans.
        J Biol Chem. 1995; 270: 9307-9312
        • Chua C.C.
        • Rahimi N.
        • Forsten-Williams K.
        • Nugent M.
        Heparan sulfate proteogly cans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2.
        Circ Res. 2004; 94: 316-323
        • Zhang G.
        • Cai X.
        • Lopez-Guisa J.M.
        • Collins S.J.
        • Eddy A.A.
        Mitogenic signaling of urokinase receptor-deficient kidney fibroblasts: actions of an alternative urokinase receptor and LDL receptor-related protein.
        J Am Soc Nephrol. 2004; 15: 2090-2102
        • Gonzalez-Navarro H.
        • Nong Z.
        • Amar M.J.A.
        • et al.
        The ligand-binding function of hepatic lipase modulates the development of atherosclerosis in transgenic mice.
        J Biol Chem. 2004; 279: 45312-45321