Lipoproteins and protection of the arterial wall against infection

The “response to the threat of infection” hypothesis


      The exact reason why lipoproteins are found in the arterial intima is not understood.
      On the basis of recent findings presented in the literature, we are proposing a hypothesis that the accumulation of lipoprotein in the arterial intima is originally a physiological process, part of our defences against infection designed to protect susceptible segments of the arterial wall from microbial invasion. In addition to the intrinsic antimicrobial activities of the deposited lipids, the formation of fibrin-based matrices within the intima is promoted, fibrinolysis is inhibited, the lipid content exerts a vasoconstrictive influence and smooth muscle cells are mobilised into the intima, all these phenomenons being instrumental in fighting off an infectious menace.
      Oxidized lipids (including oxysterols and lysophosphatidylcholine) resulting from the oxidation of lipoproteins close to sites of infection and inflammation are disseminated through the circulatory system and act as alarm signals at arterial walls, promoting the penetration and retention of lipoproteins in the intimal tissue of the most susceptible segments of the arterial network.
      Oxidized lipids in the intima constitute part of first-line antimicrobial defences and their presence acts as a signal to immune effector cells (notably macrophages and lymphocytes) which trigger the acquired immune response when foreign antigens are encountered.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Khovidhunkit W.
        • Kim M.S.
        • Memon R.A.
        • et al.
        Thematic review series: the pathogenesis of atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host.
        J. Lipid Res. 2004; 45: 1169-1196
        • Memon R.A.
        • Staprans I.
        • Noor M.
        • et al.
        Infection and inflammation induce LDL oxidation in vivo.
        Arterioscler. Throm. Vasc. Biol. 2000; 20: 1536-1542
        • Hajjar D.P.
        Oxidized lipoproteins and infectious agents. Are they in collusion to accelerate atherogenesis?.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1421
        • Liuba P.
        • Persson J.
        • Luoma J.
        • Yla-Herttuala S.
        • Pesonen E.
        Acute infections in children are accompanied by oxidative modification of LDL and decrease of HDL cholesterol, and are followed by thickening of carotid intima-media.
        Eur. Heart J. 2003; 24: 515-521
        • Yan J.J.
        • Jung J.S.
        • Lee J.E.
        • et al.
        Therapeutic effects of lysophosphatidylcholine in experimental sepsis.
        Nat. Med. 2004; 10: 161-167
        • Guillaume C.
        • Calzada C.
        • Lagarde M.
        • Schrevel J.
        • Deregnaucourt C.
        Interplay between lipoproteins and bee venom phospholipase A2 in relation to their anti-plasmodium toxicity.
        J. Lipid Res. 2006; 47: 1493-1506
        • Taskinen S.
        • Kovanen P.T.
        • Jarva H.
        • Meri S.
        • Pentikainen M.O.
        Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein.
        Biochem. J. 2002; 367: 403-412
        • Maillard P.
        • Huby T.
        • Andreo U.
        • et al.
        The interaction of natural hepatitis C virus with human scavenger receptor SR-B1/Cla1 is mediated by ApoB-containing lipoproteins.
        FASEB J. 2006; 6: 735-737
        • Von Hahn T.
        • Lindenbach B.D.
        • Boullier A.
        • et al.
        Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells.
        Hepatology. 2006; 43: 932-942
        • Epstein S.E.
        • Zhou Y.F.
        • Zhu J.
        Infection and atherosclerosis: emerging mechanistic paradigms.
        Circulation. 1999; 100: e20-e28
        • Chang M.Y.
        • Tsoi C.
        • Wight T.N.
        • Chait A.
        Lysophosphatidylcholine regulates synthesis of biglycan and the proteoglycan form of macrophage colony stimulating factor.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 809
        • Akira S.
        • Takeda K.
        Toll-like receptor signalling.
        Nat. Rev. Immunol. 2004; 4: 499-511
        • Shimaoka T.
        • Kume N.
        • Minami N.
        • et al.
        LOX-1 supports adhesion of gram-positive and gram-negative bacteria.
        J. Immunol. 2001; 166: 5108-5114
        • Mehta J.L.
        The role of LOX-1, a novel lectin-like receptor for oxidized low density lipoprotein, in atherosclerosis.
        Can. J. Cardiol. 2004; 20: 32B-36B
        • Gibson 3rd, F.C.
        • Hong C.
        • Chou H.H.
        • et al.
        Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice.
        Circulation. 2004; 109: 2801-2806
        • Cominacini L.
        • Rigoni A.
        • Pasini A.F.
        • et al.
        The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide.
        J. Biol. Chem. 2001; 276: 13750-13755
        • Mittermayer F.
        • Pleiner J.
        • Schaller G.
        • et al.
        Tetrahydrobiopterin corrects Escherichia coli endotoxin-induced endothelial dysfunction.
        Am. J. Physiol. Heart Circ. Physiol. 2005; 289: H1752-H1757
        • Forstermann U.
        Endothelial NO synthase as a source of NO and superoxide.
        Eur. J. Clin. Pharmacol. 2006; 6: 5-12
        • Wamhoff B.R.
        • Kumar M.S.
        • Owens G.K.
        Role of alterations in the differentiated state of the smooth muscle cell in atherothrombogenesis.
        in: Furster V. Topol E.J. Nabel E.G. Atherothrombosis and coronary artery disease. Lippincott Williams and Wilkins, 2005: 412-413
        • Blake J.G.
        • Libby P.
        • Ridker P.M.
        Inflammatory markers.
        in: Furster V. Topol E.J. Nabel E.G. Atherothrombosis and coronary artery disease. Lippincott Williams and Wilkins, 2005: 694
        • White C.R.
        • Brock T.A.
        • Chang L.Y.
        • et al.
        Superoxide and peroxynitrite in atherosclerosis.
        Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 1044-1048
        • Smirnova I.V.
        • Sawamura T.
        • Goligorsky M.S.
        Upregulation of lectin-like oxidized low-density lipoprotein receptor-1(LOX-1) in endothelial cells by nitric oxide deficiency.
        Am. J. Physiol. Renal Physiol. 2004; 287: F25-F32
        • Thambyrajah J.
        • Townend J.N.
        Homocysteine and atherothrombosis-mechanisms for injury.
        Eur. Heart J. 2000; 21: 967-974
        • Nakano E.
        • Taiwo F.A.
        • Nugent D.
        • et al.
        Downstream effects on human low density lipoprotein of homocysteine exported from endothelial cells in an in vitro system.
        J. Lipid Res. 2005; 46: 484-493
        • Buttery L.D.
        • Springali D.R.
        • Chester A.H.
        • et al.
        Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite.
        Lab. Invest. 1996; : 77-85
        • Gao J.
        • Zhao W.X.
        • Zhou L.J.
        • et al.
        Protective effects of propofol on lipopolysaccharide-activated endothelial cell barrier dysfunction.
        Inflamm. Res. 2006; 55: 385-392
        • CooK S.
        Coronary artery disease, nitric oxide and oxidative stress: the “Yin-Yang” effect—a Chinese concept for a worldwide pandemic.
        Swiss Med. Wkly. 2006; 136: 103-113
        • Sucu N.
        • Unlu A.
        • Tamer L.
        • et al.
        3-Nitrotyrosine in atherosclerotic blood vessels.
        Clin. Chem. Lab. Med. 2003; 41: 23-25
        • Yoshida Y.
        • Sue W.
        • Okano M.
        • et al.
        The effects of augmented dynamic forces on the progression and topography of atherosclerotic plaques.
        Ann. N.Y. Acad. Sci. 1990; 598: 256-273
        • Zarins C.K.
        • Giddens D.P.
        • Bharadvaj B.K.
        • et al.
        Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
        Circ. Res. 1983; 53: 502-514
        • Gimbrone Jr., M.A.
        Vascular endothelium, hemodynamic forces, and atherogenesis.
        Am. J. Pathol. 1999; 155: 1-5
        • Beeson J.G.
        • Rogerson S.J.
        • Cooke B.M.
        • et al.
        Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria.
        Nat. Med. 2000; 6: 25-26
        • Hajra L.
        • Evans A.I.
        • Chen M.
        • et al.
        The NF-kappaB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation.
        PNAS. 2000; 97: 9052-9057
        • Yang Q.W.
        • Mou L.
        • Lv F.L.
        • et al.
        Role of toll-like receptor 4/NF-kappaB pathway in monocyte-endothelial adhesion induced by low shear stress and ox-LDL.
        Biorheology. 2005; 42: 225-236
        • LaMack J.A.
        • Himburg H.A.
        • Li X.M.
        • Friedman M.H.
        Interaction of wall shear stress magnitude and gradient on the prediction of arterial macromolecular permeability.
        Ann. Biomed. Eng. 2005; 33: 457-464
        • Berk B.C.
        • Min W.
        • Yan C.
        • et al.
        Atheroprotective mecanisms activated by fluid shear stress in endothelial cells.
        Drug News Perspect. 2002; 15: 133-139
        • Bannermann D.D.
        • Goldblum S.E.
        Direct effects of endotoxin on the endothelium: barrier function and injury.
        Lab. Invest. 1999; 79: 1181-1199
        • Gardner G.
        • Banka C.L.
        • Roberts K.A.
        • et al.
        Modified LDL-mediated increases in endothelial layer permeability are attenuated with 17 beta-estradiol.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 854-861
        • Rong J.
        • Rangaswany S.
        • Shen L.
        • et al.
        Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1885-1894
        • Huang F.
        • Subbaiah P.V.
        • Holian O.
        • et al.
        Lysophosphatidylcholine increases endothelial permeability: role of PKCalpha and RhoA cross talk.
        Am. J. Physiol. Lung Cell Mol. Physiol. 2005; 289: L174-L175
        • Hennig B.
        • Meerarani P.
        • Ramadass P.
        • et al.
        Fatty acids mediated activation of vascular endothelial cells.
        Metabolism. 2000; 49: 1006-1013
        • Berman R.S.
        • Martin W.
        Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system.
        Br. J. Pharmacol. 1993; 108: 920-926
        • Ahmmed G.U.
        • Malik A.B.
        Functional role of TRPC channels in the regulation of endothelial permeability.
        Pflugers Arch. 2005; 451: 131-142
        • Berthier A.
        • Lemaire-Ewing S.
        • Prunet C.
        • et al.
        Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of TRPC-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis.
        Cell Death Differ. 2004; 11: 897-905
        • Flemming P.K.
        • Dedman A.M.
        • Xu S.Z.
        • et al.
        Sensing of lysophospholipids by TRPC-5 calcium channel.
        J. Biol. Chem. 2006; 281: 4977-4982
        • Essler M.
        • Retzer M.
        • Bauer M.
        • et al.
        Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of Rho/Rho Kinase and inhibition of myosin light chain phosphatase.
        J. Biol. Chem. 1999; 274: 30361-30364
        • Pillarisetti S.
        Lipoprotein modulation of subendothelial heparan sulfate proteoglycans (perlecan) and atherogenicity.
        Cardiovasc. Med. 2000; 10: 60-65
        • Chen G.
        • Wang D.
        • Vikramadithyan R.
        • et al.
        Inflammatory cytokines and fatty acids regulate endothelial cells heparanase expression.
        Biochemistry. 2004; 43: 4971-4977
        • Edwards I.J.
        • Xu H.
        • Wright M.J.
        • wagner W.D.
        Interleukin-1 upregulates decorin production by arterial smooth muscle cells.
        Arterioscler. Thromb. 1994; 14: 1032-1039
        • Schaefer L.
        • Babelova A.
        • Kiss E.
        • et al.
        The signal matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages.
        J. Clin. Invest. 2005; 115: 2223-2233
        • Zhang H.
        • Sun G.Y.
        LPS induces permeability injury in lung microvascular endothelium via AT(1) receptor.
        Arch. Biochem. Biophys. 2005; 441: 75-83
        • Figueroa J.E.
        • Vijayagopal P.
        Angiotensin II stimulates synthesis of vascular smooth muscle cell proteoglycans with enhanced low density lipoprotein binding properties.
        Atherosclerosis. 2002; 162: 261-268
        • Benitez S.
        • Villegas V.
        • Bancell C.
        • et al.
        Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.
        Biochemistry. 2004; 43: 15863-15872
        • Hurt-Camejo E.
        • Camejo G.
        • Sartipy P.
        Phospholipase A2 and small, dense low-density lipoprotein.
        Curr. Opin. Lipidol. 2000; 11: 465-471
        • Oorni K.
        • Posio P.
        • Ala-Korpela M.
        • Jauhiainen M.
        • Kovanen P.T.
        Sphingomyelinase induces aggregation and fusion of small very low-density lipoprotein and intermediate-density lipoprotein particles and increases their retention to human arterial proteoglycans.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1678-1683
        • Parthasarathy S.
        • Steinbrecher U.P.
        • Barnett J.
        • et al.
        Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein.
        Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 3000-3004
        • Jaross W.
        • Eckey R.
        • Menschikowski M.
        Biological effects of secretory phospholipase A2 group IIA on lipoproteins and in atherogenosis.
        Eur J. Clin. Invest. 2002; 32: 383-393
        • Pentikainen M.O.
        • Oorni K.
        • Kovanen P.T.
        Lipoprotein lipase (LPL) strongly links native and oxidized low density lipoprotein particles to decorin-coated collagen. Roles for both dimeric and monomeric forms of LPL.
        J. Biol. Chem. 2000; 275: 5694-5701
        • Wu X.
        • Wang J.
        • Fan J.
        • et al.
        Localised vessel expression of lipoprotein lipase in rabbits leads to rapid lipid deposition in the balloon-injured arterial wall.
        Atherosclerosis. 2006; 187: 65-73
        • Ogasawara K.
        • Mashiba S.
        • Wada Y.
        • et al.
        A serum amyloid A and LDL complex as a new prognostic marker in stable coronary artery disease.
        Atherosclerosis. 2004; 176: 431
        • Meek R.L.
        • Urieli-Shoval S.
        • Benditt E.P.
        • et al.
        Expression of apolipoprotein serum amyloid A mRNA in human atherosclerotic lesions and cultured vascular cells: implications for serum amyloid function.
        Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 3186-3190
        • Elliott-Bryant R.
        • Silbert J.E.
        • Sugumaran G.
        Serum amyloid A, an acute phase protein, modulates proteoglycan synthesis in cultured murine peritoneal macrophages.
        Biochem. Biophys. Res. Commun. 1999; 261: 298-301
        • O’Brien K.D.
        • McDonald T.O.
        • Kunjathoor V.
        • et al.
        Serum amyloid A and lipoprotein retention in murine models of atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 785-790
        • Zeng X.
        • Chen J.
        • Miller Y.I.
        • Javaherian K.
        • Moulton K.S.
        Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis.
        J. Lipid Res. 2005; 46: 1849-1859
        • Fabricant C.G.
        • Hajjar D.P.
        • Minick C.R.
        • et al.
        Herpes virus infection enhances cholesterol and cholesteryl ester accumulation in cultured arterial smooth muscle cells.
        Am. J. Pathol. 1981; 105: 176-184
        • Chirathaworn C.
        • Pongpanich A.
        • Poovorawan Y.
        Herpes simplex virus 1 induced LOX-1 expression in an endothelial cell line, ECV304.
        Viral Immunol. 2004; 17: 308-314
        • Beriosov A.T.
        • IvanovAS
        • Ivkov V.G.
        • et al.
        Cholesterol oxidation on fluorocarbon emulsion surface leads to the formation of 7-peroxycholesterol.
        FEBS Lett. 1990; 266: 72-74
        • Yoshida T.
        • Matsuzaki Y.
        • Haigh W.B.
        • et al.
        Origin of oxysterols in hepatic bile of patients with biliary infection.
        Am. J. Gastroenterol. 2003; 98: 2275-2280
        • Cheng Y.W.
        • Kang J.J.
        • Shih Y.L.
        • Lo Y.L.
        • Wang C.F.
        Cholesterol-3-beta, 5-alpha 6-beta-triol induced genotoxicity through reactive oxygen species formation.
        Food Chem. Toxicol. 2005; 43: 617-622
        • Moog C.
        • Aubertin A.M.
        • Kirn A.
        • Luu B.
        Oxysterols, but not cholesterol, inhibit human immunodeficiency virus replication in vitro.
        Antivir. Chem. Chemother. 1998; 9: 491-496
        • Yang J.J.
        • Jung S.S.
        • Lee J.E.
        • et al.
        Therapeutic effects of lysophosphatidylcholine in experimental sepsis.
        Nat. Med. 2004; 10: 161-167
        • Kumaratilake L.M.
        • Robinson B.S.
        • Ferrante A.
        • Poulos A.
        Antimalarial properties of n-3 and n-6 polyunsaturated fatty acids: in vitro effects on Plasmodium falciparum and in vivo effects on P. Berghei.
        J. Clin. Invest. 1992; 89: 961-967
        • Tiruppathi C.
        • Nagvi T.
        • Wu Y.
        • et al.
        Albumin mediates the transcytosis of myeloperoxydase by means of caveolae in endothelial cells.
        Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 7699-7704
        • Thukkani A.K.
        • Albert C.J.
        • Wildsmith K.R.
        • et al.
        Myeloperoxidase-derived reactive chlorinated species from human monocytes target plasmalogens in low density lipoprotein.
        J. Biol. Chem. 2003; 278: 36365-36372
        • Nakano E.
        • Taiwo F.A.
        • Nugent D.
        • et al.
        Downstream effects on human low density lipoprotein of homocysteine exported from endothelial cells in an in vitro system.
        J. Lipid Res. 2004;
        • Schwemmer M.
        • Aho H.
        • Michel J.B.
        Interleukin-1beta-induced type IIA secreted phospholipase A2 gene expression and extracellular activity in rat vascular endothelial cells.
        Tissue Cell. 2001; 33: 233-240
        • Peilot H.
        • Rosengren B.
        • Bondjers G.
        • Hurt-Camejo E.
        Interferon-gamma induces secretory group IIA phospholipase A2 in human arterial smooth muscle cells. Involvement of cell differentiation, STAT-3 activation, and modulation by other cytokines.
        J. Biol. Chem. 2000; 275: 22895-22904
        • Taskinen S.
        • Kovanen P.T.
        • Jarva H.
        • et al.
        Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein.
        Biochem. J. 2002; 367: 403-412
        • Jaross W.
        • Eckey R.
        • Menschikowski M.
        Biological effects of secretory phospholipase A2 group IIA on lipoproteins and in atherogenosis.
        Eur. J. Clin. Invest. 2002; 32: 383-393
        • Opal S.M.
        • Esmon C.T.
        Functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis.
        Crit. Care. 2003; 7: 23-38
        • Hansen J.B.
        • Huseby K.R.
        • Huseby N.E.
        Tissue factor pathway inhibitor in complex with low density lipoprotein isolated from human plasma does not possess anticoagulant function in tissue factor-induced coagulation in vitro.
        Thromb. Res. 1997; 85: 413-425
        • Hansen J.B.
        • Grimsgaard M.
        • Huseby N.
        • et al.
        Serum lipids and regulation of tissue factor-induced coagulation in middle-aged men.
        Thromb. Res. 2001; 1102: 3-13
        • Kim J.A.
        • Tran N.D.
        • Berliner J.A.
        • et al.
        Minimally oxidized low-density lipoprotein regulates hemostasis factors of brain capillary endothelial cells.
        J. Neurol. Sci. 2004, Feb 15; 217: 135-141
        • Ohkura N.
        • Hiraishi S.
        • Itabe H.
        • et al.
        Oxidized phospholipids in oxidized low-density lipoprotein reduce the activity of tissue factor pathway inhibitor through association with its carboxy-terminal region.
        Antioxid. Redox Signal. 2004; 6: 705-712
        • Blann A.D.
        • Burrows G.
        • McCollum C.N.
        Oxidized and native low-density lipoproteins induce the release of von Willebrand factor from human endothelial cells in vitro.
        Br. J. Biomed. Sci. 2003; 60: 155-160
        • Bochkov V.N.
        • Mechtcheriakova D.
        • Lucerna M.
        • et al.
        Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT.
        Blood. 2002; 99: 199-206
        • Griffin J.H.
        • Fernandez J.A.
        • Deguchi H.
        Plasma lipoproteins, hemostasis, and thrombosis.
        Thromb. Haemost. 2001; 86: 386-394
        • Jovin I.S.
        • Willuweit A.
        • Taborski U.
        • et al.
        Low-density lipoproteins induce the polar secretion of PAI-1 by endothelial cells in culture.
        Am. J. Hematol. 2003; 73: 66-68
        • Simon D.I.
        • Fless G.M.
        • Scanu A.M.
        • Loscalzo J.
        Tissue-type plasminogen activator binds to and is inhibited by surface-bound lipoprotein(a) and low-density lipoprotein.
        Biochemistry. 1991; 30: 6671-6677
        • Edelberg J.M.
        • Gonzalez-Gronow M.
        • Pizzo S.V.
        Lipoprotein a inhibits streptokinase-mediated activation of human plasminogen.
        Biochemistry. 1989; 28: 2370-2374
        • Boring L.
        • Gosling J.
        • Cleary M.
        • et al.
        Decreased lesion formation in CCR2−/−mice reveals a role for chemokines in the initiation of atherosclerosis.
        Nature. 1998; 394: 894-897
        • Gosling J.
        • Slaymaker S.
        • Gu L.
        • et al.
        MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B.
        J. Clin. Invest. 1999; 103: 773-778
        • Cathcart M.K.
        • Morel D.W.
        • Chisolm 3rd, G.M
        Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic.
        J. Leukoc. Biol. 1985; 38: 341-350
        • McNally A.K.
        • Chilsom G.M.
        • Morel D.W.
        • Cathcart M.K.
        Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase dependant pathway.
        J. Immunol. 1990; 145: 254-259
        • Xu X.H.
        • Shah P.K.
        • Faure E.
        • et al.
        Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL.
        Circulation. 2001; 104: 3103-3108
      1. Raines EW, Libby P, Rosenfeld ME. The roles of macrophages. In: Furster V, Topol EJ, Nabel EG, editors. Atherosclerosis and coronary artery disease. Lippincott Williams and Wilkins. p. 513.

      2. Penn SM, Chilsom GM. Lipoprotein oxidation, arterial inflammation and atherogenesis. In: Furster V, Topol EJ, Nabel EG, editors. Atherosclerosis and coronary artery disease. Lippincott Williams and Wilkins. p. 115.

        • Cheng B.
        • Yu Q.
        • Bai Z.
        • et al.
        Mechanisms of increased expression of toll-like receptor-4 in human monocytes/macrophage-derived foam cells.
        J. Huazhong Univ. Sci. Technol. Med. Sci. 2005; 25: 477-479
        • Holvoet P.
        • Davey P.C.
        • De Keyser D.
        • et al.
        Oxidized low-density lipoprotein correlates positively with toll-like receptor 2 and interferon regulatory Factor-1 and inversely with superoxide dismutase-1 expression. Studies in hypercholesterolemic swine and THP-1 cells.
        Arterioscler. Thromb. Vascul. Biol. 2006;
        • Stuart L.M.
        • Deng J.
        • Silver J.M.
        • et al.
        Response to Staphylococcus aureus requires CD-36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain.
        J. Cell Biol. 2005; 170: 477-485
        • D’Avila H.
        • Melo R.C.
        • Parreira G.G.
        • et al.
        Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo.
        Immunology. 2006; 176: 3087-3097
        • Giacona M.B.
        • Papanaou P.N.
        • Lamster I.B.
        • et al.
        Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cells formation in vitro.
        FEMS Microbiol. Lett. 2004; 241: 95-101
        • Kohno M.
        • Yokokawa K.
        • Yasunari K.
        • et al.
        Induction by lysophosphatidylcholine, a major phospholipid component of atherogenic lipoproteins, of human coronary artery smooth muscle cell migration.
        Circulation. 1998; 98: 353-359
        • Wang H.
        • Liu B.
        • Fu M.
        Effect of native and oxidation-modified LDL, VLDL and HDL on the morphological appearance and phenotype of cultured human arterial smooth muscle cells.
        Hua Xi Yi Ke Da Xue Xue Bao. 1995; 26: 146-150
        • Aiyar N.
        • Disa J.
        • Ao Z.
        • et al.
        Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells.
        Mol. Cell. Biochem. 2006;
        • Rong J.X.
        • Shapiro M.
        • Trogan E.
        • et al.
        Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading.
        Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 13531-13536
        • Garfield R.E.
        • Chacko S.
        • Blose S.
        Phagocytosis by muscle cells.
        Lab. Invest. 1975; 33: 418-427
        • Robicsek F.
        • Thubrikar M.J.
        The freedom from atherosclerosis of intramyocardial coronary arteries: reduction of mural stress—a key factor.
        Eur. J. Cardiothorac. Surg. 1994; 8: 228-235