Advertisement

Dyslipidaemia and cardiorenal disease: mechanisms, therapeutic opportunities and clinical trials

  • Doris T. Chan
    Affiliations
    Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 6000, Australia

    Department of Nephrology and Transplantation, Royal Perth Hospital, Perth, Western Australia 6000, Australia
    Search for articles by this author
  • Ashley B. Irish
    Affiliations
    Department of Nephrology and Transplantation, Royal Perth Hospital, Perth, Western Australia 6000, Australia
    Search for articles by this author
  • Gursharan K. Dogra
    Affiliations
    Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 6000, Australia

    Department of Nephrology and Transplantation, Royal Perth Hospital, Perth, Western Australia 6000, Australia
    Search for articles by this author
  • Gerald F. Watts
    Correspondence
    Corresponding author at: Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Western Australia 6000, Australia. Tel.: +61 8 9220245; fax: +61 8 9220246.
    Affiliations
    Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia 6000, Australia
    Search for articles by this author

      Abstract

      Dyslipidaemia is an important risk factor for the development of chronic kidney disease (CKD) and cardiovascular disease (CVD). CKD generates an atherogenic lipid profile, characterised by high triglycerides, low high-density lipoprotein (HDL) cholesterol and accumulation of small dense low-density lipoprotein (LDL) particles, comparable to that in the metabolic syndrome. These changes are due specifically to the effects of CKD on key enzymes, transfer proteins and receptors involved in lipid metabolism. Dyslipidaemia is further compounded by dialysis, immunosuppressive drugs, and concomitant diseases such as diabetes mellitus. Post hoc analyses from large intervention trials suggest the benefit of statins in patients with early CKD, but prospective clinical trials in haemodialysis (HD) and renal transplant recipients have not conclusively shown improvements in hard cardiovascular end-points. The lack of efficacy of statins in late-stage CKD could be a consequence of other disease processes, such as calcific arteriopathy and insulin resistance, which are not modified by lipid-lowering agents. Despite uncertainty and pending the results of ongoing statin trials such as Study of Heart and Renal Protection (SHARP) and AURORA (A study to evaluate the Use of Rosuvastatin in subjects On Regular haemodialysis: an Assessment of survival and cardiovascular events), major international guidelines continue to support statin therapy in CKD and renal transplant patients to reduce cardiovascular risk burden. Because of increased risk of toxicity, particularly myopathy, statins and other lipid-regulating agents should be used cautiously in CKD and renal transplant recipients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Foley R.N.
        • Parfrey P.S.
        • Sarnak M.J.
        Clinical epidemiology of cardiovascular disease in chronic renal disease.
        Am J Kidney Dis. 1998; 32: S112-S119
        • Foley R.N.
        • Wang C.
        • Collins A.J.
        Cardiovascular risk factor profiles and kidney function stage in the US general population: the NHANES III study.
        Mayo Clin Proc. 2005; 80: 1270-1277
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Vanholder R.
        • Massy Z.
        • Argiles A.
        • et al.
        Chronic kidney disease as cause of cardiovascular morbidity and mortality.
        Nephrol Dial Transplant. 2005; 20: 1048-1056
        • Baigent C.
        • Burbury K.
        • Wheeler D.
        Premature cardiovascular disease in chronic renal failure.
        Lancet. 2000; 356: 147-152
        • Schwarz U.
        • Buzello M.
        • Ritz E.
        • et al.
        Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure.
        Nephrol Dial Transplant. 2000; 15: 218-223
        • Blacher J.
        • Guerin A.P.
        • Pannier B.
        • Marchais S.J.
        • London G.M.
        Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease.
        Hypertension. 2001; 38: 938-942
        • Blacher J.
        • Safar M.E.
        • Guerin A.P.
        • et al.
        Aortic pulse wave velocity index and mortality in end-stage renal disease.
        Kidney Int. 2003; 63: 1852-1860
        • London G.M.
        Arterial function in renal failure.
        Nephrol Dial Transplant. 1998; 13: 12-15
        • Vaziri N.D.
        Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences.
        Am J Physiol Renal Physiol. 2006; 290: F262-F272
        • Attman P.O.
        • Samuelsson O.
        • Johansson A.C.
        • Moberly J.B.
        • Alaupovic P.
        Dialysis modalities and dyslipidemia.
        Kidney Int Suppl. 2003; : S110-S112
        • Batista M.C.
        • Welty F.K.
        • Diffenderfer M.R.
        • et al.
        Apolipoprotein A-I, B-100, and B-48 metabolism in subjects with chronic kidney disease, obesity, and the metabolic syndrome.
        Metabolism. 2004; 53: 1255-1261
        • Kimak E.
        • Solski J.
        • Janicka L.
        Lipoprotein profiles at different stages of chronic renal insufficiency.
        Ren Fail. 2000; 22: 63-71
        • Farbakhsh K.
        • Kasiske B.L.
        Dyslipidemias in patients who have chronic kidney disease.
        Med Clin North Am. 2005; 89: 689-699
        • Deighan C.J.
        • Caslake M.J.
        • McConnell M.
        • Boulton-Jones J.M.
        • Packard C.J.
        Atherogenic lipoprotein phenotype in end-stage renal failure: origin and extent of small dense low-density lipoprotein formation.
        Am J Kidney Dis. 2000; 35: 852-862
        • Prinsen B.H.
        • De Sain-Van Der Velden M.G.
        • de Koning E.J.
        • et al.
        Hypertriglyceridemia in patients with chronic renal failure: possible mechanisms.
        Kidney Int Suppl. 2003; : S121-S124
        • Cheung A.K.
        • Parker C.J.
        • Ren K.
        • Iverius P.H.
        Increased lipase inhibition in uremia: identification of pre-beta-HDL as a major inhibitor in normal and uremic plasma.
        Kidney Int. 1996; 49: 1360-1371
        • Nishizawa Y.
        • Shoji T.
        • Kawagishi T.
        • Morii H.
        Atherosclerosis in uremia: possible roles of hyperparathyroidism and intermediate density lipoprotein accumulation.
        Kidney Int Suppl. 1997; 62: S90-S92
        • Weintraub M.
        • Burstein A.
        • Rassin T.
        • et al.
        Severe defect in clearing postprandial chylomicron remnants in dialysis patients.
        Kidney Int. 1992; 42: 1247-1252
        • Kim C.
        • Vaziri N.D.
        Down-regulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure.
        Kidney Int. 2005; 67: 1028-1032
        • Vaziri N.D.
        • Liang K.
        • Parks J.S.
        Down-regulation of hepatic lecithin:cholesterol acyltransferase gene expression in chronic renal failure.
        Kidney Int. 2001; 59: 2192-2196
        • Kurella M.
        • Lo J.C.
        • Chertow G.M.
        Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults.
        J Am Soc Nephrol. 2005; 16: 2134-2140
        • Prinsen B.H.
        • Rabelink T.J.
        • Romijn J.A.
        • et al.
        A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis.
        Kidney Int. 2004; 65: 1064-1075
        • de Sain-van der Velden M.
        • Kaysen G.A.
        • Barrett H.A.
        • et al.
        Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis.
        Kidney Int. 1998; 53: 994-1001
        • Joven J.
        • Villabona C.
        • Vilella E.
        • et al.
        Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome.
        N Engl J Med. 1990; 323: 579-584
        • Kaysen G.A.
        • de Sain-van der Velden M.G.
        New insights into lipid metabolism in the nephrotic syndrome.
        Kidney Int Suppl. 1999; 71: S18-S21
        • Vaziri N.D.
        Molecular mechanisms of lipid disorders in nephrotic syndrome.
        Kidney Int. 2003; 63: 1964-1976
        • Wheeler D.C.
        • Bernard D.B.
        Lipid abnormalities in the nephrotic syndrome: causes, consequences, and treatment.
        Am J Kidney Dis. 1994; 23: 331-346
        • Vaziri N.D.
        • Liang K.H.
        Hepatic HMG-CoA reductase gene expression during the course of puromycin-induced nephrosis.
        Kidney Int. 1995; 48: 1979-1985
        • Vaziri N.D.
        • Liang K.H.
        Down-regulation of hepatic LDL receptor expression in experimental nephrosis.
        Kidney Int. 1996; 50: 887-893
        • Vaziri N.D.
        • Kim C.H.
        • Phan D.
        • Kim S.
        • Liang K.
        Up-regulation of hepatic Acyl CoA: diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome.
        Kidney Int. 2004; 66: 262-267
        • Ordonez J.D.
        • Hiatt R.A.
        • Killebrew E.J.
        • Fireman B.H.
        The increased risk of coronary heart disease associated with nephrotic syndrome.
        Kidney Int. 1993; 44: 638-642
        • Lechner B.L.
        • Bockenhauer D.
        • Iragorri S.
        • Kennedy T.L.
        • Siegel N.J.
        The risk of cardiovascular disease in adults who have had childhood nephrotic syndrome.
        Pediatr Nephrol. 2004; 19: 744-748
        • Liu J.
        • Rosner M.H.
        Lipid abnormalities associated with end-stage renal disease.
        Semin Dialysis. 2006; 19: 32-40
        • Fytili C.I.
        • Progia E.G.
        • Panagoutsos S.A.
        • et al.
        Lipoprotein abnormalities in hemodialysis and continuous ambulatory peritoneal dialysis patients.
        Ren Fail. 2002; 24: 623-630
        • Attman P.O.
        • Samuelsson O.G.
        • Moberly J.
        • et al.
        Apolipoprotein B-containing lipoproteins in renal failure: the relation to mode of dialysis.
        Kidney Int. 1999; 55: 1536-1542
        • Kolovou G.D.
        • Anagnostopoulou K.K.
        • Cokkinos D.V.
        Pathophysiology of dyslipidaemia in the metabolic syndrome.
        Postgrad Med J. 2005; 81: 358-366
        • Moberly J.B.
        • Attman P.O.
        • Samuelsson O.
        • et al.
        Alterations in lipoprotein composition in peritoneal dialysis patients.
        Perit Dial Int. 2002; 22: 220-228
        • Castelao A.M.
        • Barbera M.J.
        • Blanco A.
        • et al.
        Lipid metabolic abnormalities after renal transplantation under cyclosporine and prednisone immunosuppression.
        Transplant Proc. 1992; 24: 96-98
        • Tse K.C.
        • Lam M.F.
        • Yip P.S.
        • et al.
        A long-term study on hyperlipidemia in stable renal transplant recipients.
        Clin Transplant. 2004; 18: 274-280
        • Kasiske B.L.
        Hyperlipidemia in patients with chronic renal disease.
        Am J Kidney Dis. 1998; 32: S142-S156
        • Kimak E.
        • Solski J.
        Serum lipoprotein(a) concentrations and apolipoprotein(a) phenotypes in hemodialysis, chronic ambulatory peritoneal dialysis and post-transplant patients.
        Ren Fail. 2002; 24: 187-195
        • Brown J.H.
        • Murphy B.G.
        • Douglas A.F.
        • et al.
        Influence of immunosuppressive therapy on lipoprotein(a) and other lipoproteins following renal transplantation.
        Nephron. 1997; 75: 277-282
        • Fernandez-Miranda C.
        • de la C.A.
        • Morales J.M.
        • et al.
        Lipoprotein abnormalities in long-term stable liver and renal transplanted patients A comparative study.
        Clin Transplant. 1998; 12: 136-141
        • Quaschning T.
        • Mainka T.
        • Nauck M.
        • et al.
        Immunosuppression enhances atherogenicity of lipid profile after transplantation.
        Kidney Int Suppl. 1999; 71: S235-S237
        • Artz M.A.
        • Boots J.M.
        • Ligtenberg G.
        • et al.
        Improved cardiovascular risk profile and renal function in renal transplant patients after randomized conversion from cyclosporine to tacrolimus.
        J Am Soc Nephrol. 2003; 14: 1880-1888
        • Chueh S.C.
        • Kahan B.D.
        Dyslipidemia in renal transplant recipients treated with a sirolimus and cyclosporine-based immunosuppressive regimen: incidence, risk factors, progression, and prognosis.
        Transplantation. 2003; 76: 375-382
        • Morrisett J.D.
        • bdel-Fattah G.
        • Hoogeveen R.
        • et al.
        Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients.
        J Lipid Res. 2002; 43: 1170-1180
        • Kobashigawa J.A.
        • Kasiske B.L.
        Hyperlipidemia in solid organ transplantation.
        Transplantation. 1997; 63: 331-338
        • Berg A.L.
        • NilssonEhle P.
        ACTH lowers serum lipids in steroid-treated hyperlipemic patients with kidney disease.
        Kidney Int. 1996; 50: 538-542
        • Mathis A.S.
        • Dave N.
        • Knipp G.T.
        • Friedman G.S.
        Drug-related dyslipidemia after renal transplantation.
        Am J Health Syst Pharm. 2004; 61: 565-585
        • Morrisett J.D.
        • bdel-Fattah G.
        • Kahan B.D.
        Sirolimus changes lipid concentrations and lipoprotein metabolism in kidney transplant recipients.
        Transplant Proc. 2003; 35: S143-S150
        • Hoogeveen R.C.
        • Ballantyne C.M.
        • Pownall H.J.
        • et al.
        Effect of sirolimus on the metabolism of apo.
        Transplantation. 2001; 72: 1244-1250
        • Tur M.D.
        • Garrigue V.
        • Vela C.
        • et al.
        Apolipoprotein CIII is upregulated by anticalcineurins and rapamycin: implications in transplantation-induced dyslipidemia.
        Transplant Proc. 2000; 32: 2783-2784
        • Degoulet P.
        • Legrain M.
        • Reach I.
        • et al.
        Mortality risk factors in patients treated by chronic hemodialysis Report of the Diaphane collaborative study.
        Nephron. 1982; 31: 103-110
        • Iseki K.
        • Yamazato M.
        • Tozawa M.
        • Takishita S.
        Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients.
        Kidney Int. 2002; 61: 1887-1893
        • Liu Y.
        • Coresh J.
        • Eustace J.A.
        • et al.
        Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition.
        JAMA. 2004; 291: 451-459
        • Shoji T.
        • Ishimura E.
        • Inaba M.
        • Tabata T.
        • Nishizawa Y.
        Atherogenic lipoproteins in end-stage renal disease.
        Am J Kidney Dis. 2001; 38: S30-S33
        • Preston E.
        • Ellis M.R.
        • Kulinskaya E.
        • Davies A.H.
        • Brown E.A.
        Association between carotid artery intima-media thickness and cardiovascular risk factors in CKD.
        Am J Kidney Dis. 2005; 46: 856-862
        • Jungers P.
        • Massy Z.
        • Khoa T.
        • et al.
        Incidence and risk factors of atherosclerotic cardiovascular accidents in predialysis chronic renal failure patients: a prospective study.
        Nephrol Dialysis Transplant. 1997; 12: 2597-2602
        • Sacks F.M.
        • Pfeffer M.A.
        • Moye L.A.
        • et al.
        The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators.
        N Engl J Med. 1996; 335: 1001-1009
        • Scandinavian Simvastatin Survival Study Group
        Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).
        Lancet. 1994; 344: 1383-1389
        • Briel M.
        • Nordmann A.J.
        • Bucher H.C.
        Statin therapy for prevention and treatment of acute and chronic cardiovascular disease: update on recent trials and metaanalyses.
        Curr Opin Lipidol. 2005; 16: 601-605
        • Cannon C.P.
        • Steinberg B.A.
        • Murphy S.A.
        • Mega J.L.
        • Braunwald E.
        Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy.
        J Am Coll Cardiol. 2006; 48: 438-445
        • LaRosa J.C.
        • Grundy S.M.
        • Waters D.D.
        • et al.
        Intensive lipid lowering with atorvastatin in patients with stable coronary disease.
        N Engl J Med. 2005; 352: 1425-1435
        • Collins R.
        • Armitage J.
        • Parish S.
        • Sleigh P.
        • Peto R.
        MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial.
        Lancet. 2003; 361: 2005-2016
        • Sever P.S.
        • Dahlof B.
        • Poulter N.R.
        • et al.
        Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial.
        Lancet. 2003; 361: 1149-1158
        • Tonelli M.
        • Collins D.
        • Robins S.
        • Bloomfield H.
        • Curhan G.C.
        Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency.
        Kidney Int. 2004; 66: 1123-1130
        • Tonelli M.
        • Isles C.
        • Curhan G.C.
        • et al.
        Effect of pravastatin on cardiovascular events in people with chronic kidney disease.
        Circulation. 2004; 110: 1557-1563
        • Wanner C.
        • Krane V.
        • Marz W.
        • et al.
        Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis.
        N Engl J Med. 2005; 353: 238-248
        • Isbel N.M.
        • Haluska B.
        • Johnson D.W.
        • et al.
        Increased targeting of cardiovascular risk factors in patients with chronic kidney disease does not improve atheroma burden or cardiovascular function.
        Am Heart J. 2006; 151: 745-753
        • Landray M.
        • Baigent C.
        • Leaper C.
        • et al.
        The second United Kingdom Heart and Renal Protection (UK-HARP-II) Study: a randomized controlled study of the biochemical safety and efficacy of adding ezetimibe to simvastatin as initial therapy among patients with CKD.
        Am J Kidney Dis. 2006; 47: 385-395
        • Holdaas H.
        • Fellstrom B.
        • Jardine A.G.
        • et al.
        Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial.
        Lancet. 2003; 361: 2024-2031
        • Jardine A.G.
        • Fellstrom B.
        • Logan J.O.
        • et al.
        Cardiovascular risk and renal transplantation: post hoc analyses of the Assessment of Lescol in Renal Transplantation (ALERT) Study.
        Am J Kidney Dis. 2005; 46: 529-536
        • Holdaas H.
        • Fellstrom B.
        • Cole E.
        • et al.
        Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: The ALERT Extension Study.
        Am J Transplant. 2005; 5: 2929-2936
        • Holdaas H.
        • Fellstrom B.
        • Jardine A.G.
        • et al.
        Beneficial effect of early initiation of lipid-lowering therapy following renal transplantation.
        Nephrol Dialysis Transplant. 2005; 20: 974-980
        • Keech A.
        • Simes R.J.
        • Barter P.
        • et al.
        Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial.
        Lancet. 2005; 366: 1849-1861
        • Fried L.F.
        • Orchard T.J.
        • Kasiske B.L.
        Effect of lipid reduction on the progression of renal disease: a meta-analysis.
        Kidney Int. 2001; 59: 260-269
        • Sandhu S.
        • Wiebe N.
        • Fried L.F.
        • Tonelli M.
        Statins for improving renal outcomes: a meta-analysis.
        J Am Soc Nephrol. 2006; 17: 2006-2016
        • Athyros V.G.
        • Mikhailidis D.P.
        • Papageorgiou A.A.
        • et al.
        The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study.
        J Clin Pathol. 2004; 57: 728-734
        • Shepherd J.
        • et al.
        Intensive lipid lowering with atorvastatin is associated with a significant improvement in renal function: the Treating to New Targets (TNT) Study.
        J Am Coll Cardiol. 2006; 47: A316
        • Del C.D.
        • Cruzado J.M.
        • Manel D.J.
        • et al.
        The effects of hyperlipidaemia on graft and patient outcome in renal transplantation.
        Nephrol Dial Transplant. 2004; 19: iii67-iii71
        • Fellstrom B.
        • Holdaas H.
        • Jardine A.G.
        • et al.
        Effect of fluvastatin on renal end points in the Assessment of Lescol in Renal Transplant (ALERT) trial.
        Kidney Int. 2004; 66: 1549-1555
        • Masterson R.
        • Hewitson T.
        • Leikis M.
        • et al.
        Impact of statin treatment on 1-year functional and histologic renal allograft outcome.
        Transplantation. 2005; 80: 332-338
        • Ansquer J.C.
        • Foucher C.
        • Rattier S.
        • Taskinen M.R.
        • Steiner G.
        Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS).
        Am J Kidney Dis. 2005; 45: 485-493
        • Kshirsagar A.V.
        • Shoham D.A.
        • Bang H.
        • et al.
        The effect of cholesterol reduction with cholestyramine on renal function.
        Am J Kidney Dis. 2005; 46: 812-819
        • Liao J.K.
        Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol.
        Am J Cardiol. 2005; 96: 24F-33F
        • Kasiske B.
        • Cosio F.G.
        • Beto J.
        • et al.
        Clinical practice guidelines for managing dyslipidemias in kidney transplant patients: a report from the Managing Dyslipidemias in Chronic Kidney Disease Work Group of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative.
        Am J Transplant. 2004; 4: 13-53
        • Schonder K.S.
        • McKaveney T.P.
        • Lynch K.J.
        Retrospective analysis of hyperlipidemia management in a transplant population.
        Pharmacotherapy. 2005; 25: 918-923
        • De B.G.
        • Ambrosioni E.
        • Borch-Johnsen K.
        • et al.
        European guidelines on cardiovascular disease prevention in clinical practice Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts).
        Atherosclerosis. 2004; 173: 381-391
        • Erhardt L.R.
        • Gotto J.
        The evolution of European guidelines: changing the management of cholesterol levels.
        Atherosclerosis. 2006; 185: 12-20
      1. European best practice guidelines for renal transplantation. Section IV: Long-term management of the transplant recipient. IV.5.3. Cardiovascular risks. Hyperlipidaemia. Nephrol Dial Transplant, 2002;17(Suppl. 4):26–8.

        • Tonkin A.
        • Barter P.
        • Best J.
        • et al.
        National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: position statement on lipid management—2005.
        Heart Lung Circ. 2005; 14: 275-291
        • Walker R.
        Cardiovascular risk factors.
        Nephrology (Carlton). 2005; 10: S231-S234
        • Baigent C.
        • Landry M.
        Study of Heart and Renal Protection (SHARP).
        Kidney Int Suppl. 2003; : S207-S210
        • Fellstrom B.
        • Zannad F.
        • Schmieder R.
        • et al.
        Effect of rosuvastatin on outcomes in chronic haemodialysis patients—design and rationale of the AURORA study.
        Curr Control Trials Cardiovasc Med. 2005; 6: 9
        • Kasiske B.L.
        • Wanner C.
        • O’Neill W.C.
        An assessment of statin safety by nephrologists.
        Am J Cardiol. 2006; 97: S82-S85
        • Bottorff M.B.
        Statin safety and drug interactions: clinical implications.
        Am J Cardiol. 2006; 97: S27-S31
        • Broeders N.
        • Knoop C.
        • Antoine M.
        • Tielemans C.
        • Abramowicz D.
        Fibrate-induced increase in blood urea and creatinine: is gemfibrozil the only innocuous agent? Nephrol.
        Dial Transplant. 2000; 15: 1993-1999
        • Lipscombe J.
        • Lewis G.F.
        • Cattran D.
        • Bargman J.M.
        Deterioration in renal function associated with fibrate therapy.
        Clin Nephrol. 2001; 55: 39-44
        • Hottelart C.
        • El E.N.
        • Rose F.
        • Achard J.M.
        • Fournier A.
        Fenofibrate increases creatininemia by increasing metabolic production of creatinine.
        Nephron. 2002; 92: 536-541
        • Kosoglou T.
        • Statkevich P.
        • Johnson-Levonas A.O.
        • et al.
        Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions.
        Clin Pharmacokinet. 2005; 44: 467-494
        • Buchanan C.
        • Smith L.
        • Corbett J.
        • Nelson E.
        • Shihab F.
        A retrospective analysis of ezetimibe treatment in renal transplant recipients.
        Am J Transplant. 2006; 6: 770-774
        • Simard C.
        • Poirier P.
        Ezetimibe-associated myopathy in monotherapy and in combination with a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor.
        Can J Cardiol. 2006; 22: 141-144
        • Knopp R.H.
        Drug treatment of lipid disorders.
        N Engl J Med. 1999; 341: 498-511
        • Guyton J.R.
        Extended-release niacin for modifying the lipoprotein profile.
        Expert Opin Pharmacother. 2004; 5: 1385-1398
        • Devaraj S.
        • Jialal I.
        The role of dietary supplementation with plant sterols and stanols in the prevention of cardiovascular disease.
        Nutr Rev. 2006; 64: 348-354
        • Psota T.L.
        • Gebauer S.K.
        • Kris-Etherton P.
        Dietary omega-3 fatty acid intake and cardiovascular risk.
        Am J Cardiol. 2006; 98: 3-18
        • Davidson M.H.
        Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids.
        Am J Cardiol. 2006; 98: 27-33
        • Robinson J.G.
        • Stone N.J.
        Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids.
        Am J Cardiol. 2006; 98: 39-49