Advertisement

C-reactive protein and atherogenesis: From fatty streak to clinical event

      Abstract

      In recent years, it has become increasingly clear that arterial inflammation represents a key feature determining the course of atherogenesis. The consecutive stages in the evolution of atherosclerotic lesions are respectively, plaque buildup and growth, and destabilization, predisposing to plaque rupture and intravascular thrombosis. This chain of events leading from lesion formation to clinical events has been carefully elucidated during the last three decades. C-reactive protein (CRP) has been directly implicated in the pathogenesis of atherosclerosis. In the present review, we will focus on a potentially causal role of CRP during the various stages of atherogenesis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • Ebnet K.
        • Vestweber D.
        Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines.
        Histochem Cell Biol. 1999; 112: 1-23
        • Jung U.
        • Ley K.
        Regulation of E-selectin, P-selectin, and intercellular adhesion molecule 1 expression in mouse cremaster muscle vasculature.
        Microcirculation. 1997; 4: 311-319
        • Blanco-Colio L.M.
        • Munoz-Garcia B.
        • Martin-Ventura J.L.
        • et al.
        3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors decrease Fas ligand expression and cytotoxicity in activated human T lymphocytes.
        Circulation. 2003; 108: 1506-1513
        • Bjorkerud S.
        • Bjorkerud B.
        Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability.
        Am J Pathol. 1996; 149: 367-380
        • Flynn P.D.
        • Byrne C.D.
        • Baglin T.P.
        • Weissberg P.L.
        • Bennett M.R.
        Thrombin generation by apoptotic vascular smooth muscle cells.
        Blood. 1997; 89: 4378-4384
        • Blankenberg S.
        • Luc G.
        • Ducimetiere P.
        • et al.
        Interleukin-18 and the risk of coronary heart disease in european men: the prospective epidemiological study of myocardial infarction (PRIME).
        Circulation. 2003;
        • Pearson T.A.
        • Mensah G.A.
        • Alexander R.W.
        • et al.
        Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American heart association.
        Circulation. 2003; 107: 499-511
        • Heeschen C.
        • Hamm C.W.
        • Bruemmer J.
        • Simoons M.L.
        Predictive value of C-reactive protein and troponin T in patients with unstable angina: a comparative analysis. CAPTURE Investigators. Chimeric c7E3 antiplatelet therapy in unstable angina refractory to standard treatment trial.
        J Am Coll Cardiol. 2000; 35: 1535-1542
        • Danesh J.
        • Wheeler J.G.
        • Hirschfield G.M.
        • et al.
        C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.
        N Engl J Med. 2004; 350: 1387-1397
        • Boekholdt S.M.
        • Hack C.E.
        • Sandhu M.S.
        • et al.
        C-reactive protein levels and coronary artery disease incidence and mortality in apparently healthy men and women: the EPIC-Norfolk prospective population study 1993–2003.
        Atherosclerosis. 2005;
        • Morrow D.A.
        • Rifai N.
        • Antman E.M.
        • et al.
        C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis in Myocardial Infarction.
        J Am Coll Cardiol. 1998; 31: 1460-1465
        • Ridker P.M.
        • Buring J.E.
        • Cook N.R.
        • Rifai N.
        C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women.
        Circulation. 2003; 107: 391-397
        • Liuzzo G.
        • Biasucci L.M.
        • Gallimore J.R.
        • et al.
        The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina.
        N Engl J Med. 1994; 331: 417-424
        • Haverkate F.
        • Thompson S.G.
        • Pyke S.D.
        • Gallimore J.R.
        • Pepys M.B.
        • European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group
        Production of C-reactive protein and risk of coronary events in stable and unstable angina..
        Lancet. 1997; 349: 462-466
        • Ridker P.M.
        • Cushman M.
        • Stampfer M.J.
        • Tracy R.P.
        • Hennekens C.H.
        • Inflammation
        aspirin, and the risk of cardiovascular disease in apparently healthy men.
        N Engl J Med. 1997; 336: 973-979
        • Ridker P.M.
        • Cannon C.P.
        • Morrow D.
        • et al.
        C-reactive protein levels and outcomes after statin therapy.
        N Engl J Med. 2005; 352: 20-28
        • Nissen S.E.
        • Tuzcu E.M.
        • Schoenhagen P.
        • et al.
        Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease.
        N Engl J Med. 2005; 352: 29-38
        • Ballou S.P.
        • Lozanski G.
        Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein.
        Cytokine. 1992 September; 4: 361-368
        • Pasceri V.
        • Willerson J.T.
        • Yeh E.T.
        Direct proinflammatory effect of C-reactive protein on human endothelial cells.
        Circulation. 2000; 102: 2165-2168
        • Volanakis J.E.
        Human C-reactive protein: expression, structure, and function.
        Mol Immunol. 2001; 38: 189-197
        • Li S.P.
        • Goldman N.D.
        Regulation of human C-reactive protein gene expression by two synergistic IL-6 responsive elements.
        Biochemistry. 1996; 35: 9060-9068
        • Pietila K.
        • Harmoinen A.
        • Hermens W.
        • Simoons M.L.
        • Van de W.F.
        • Verstraete M.
        Serum C-reactive protein and infarct size in myocardial infarct patients with a closed versus an open infarct-related coronary artery after thrombolytic therapy.
        Eur Heart J. 1993; 14: 915-919
        • Suk H.J.
        • Ridker P.M.
        • Cook N.R.
        • Zee R.Y.
        Relation of polymorphism within the C-reactive protein gene and plasma CRP levels.
        Atherosclerosis. 2005; 178: 139-145
        • Brull D.J.
        • Serrano N.
        • Zito F.
        • et al.
        Human CRP gene polymorphism influences CRP levels: implications for the prediction and pathogenesis of coronary heart disease.
        Arterioscler Thromb Vasc Biol. 2003; 23: 2063-2069
        • Kobayashi S.
        • Inoue N.
        • Ohashi Y.
        • et al.
        Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein.
        Arterioscler Thromb Vasc Biol. 2003 August 1; 23: 1398-1404
        • Sattler K.J.
        • Woodrum J.E.
        • Galili O.
        • et al.
        Concurrent treatment with renin-angiotensin system blockers and acetylsalicylic acid reduces nuclear factor kappaB activation and C-reactive protein expression in human carotid artery plaques.
        Stroke. 2005 January; 36: 14-20
        • Lagrand W.K.
        • Niessen H.W.
        • Wolbink G.J.
        • et al.
        C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction.
        Circulation. 1997; 95: 97-103
        • Torzewski J.
        • Torzewski M.
        • Bowyer D.E.
        • et al.
        C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries.
        Arterioscler Thromb Vasc Biol. 1998; 18: 1386-1392
        • Dong Q.
        • Wright J.R.
        Expression of C-reactive protein by alveolar macrophages.
        J Immunol. 1996; 156: 4815-4820
        • Gould J.M.
        • Weiser J.N.
        Expression of C-reactive protein in the human respiratory tract.
        Infect Immun. 2001; 69: 1747-1754
        • Jabs W.J.
        • Logering B.A.
        • Gerke P.
        • et al.
        The kidney as a second site of human C-reactive protein formation in vivo.
        Eur J Immunol. 2003; 33: 152-161
        • Jialal I.
        • Devaraj S.
        • Singh U.
        Sources of CRP in atherosclerotic lesions.
        Am J Pathol. 2006; 168: 1054-1055
        • Yasojima K.
        • Schwab C.
        • McGeer E.G.
        • McGeer P.L.
        Generation of C-reactive protein and complement components in atherosclerotic plaques.
        Am J Pathol. 2001; 158: 1039-1051
        • Calabro P.
        • Willerson J.T.
        • Yeh E.T.
        Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells.
        Circulation. 2003; 108: 1930-1932
        • Venugopal S.K.
        • Devaraj S.
        • Jialal I.
        Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects.
        Am J Pathol. 2005; 166: 1265-1271
        • Turk J.R.
        • Carroll J.A.
        • Laughlin M.H.
        • et al.
        C-reactive protein correlates with macrophage accumulation in coronary arteries of hypercholesterolemic pigs.
        J Appl Physiol. 2003; 95: 1301-1304
        • Sun H.
        • Koike T.
        • Ichikawa T.
        • et al.
        C-reactive protein in atherosclerotic lesions: its origin and pathophysiological significance.
        Am J Pathol. 2005; 167: 1139-1148
        • Inoue T.
        • Kato T.
        • Uchida T.
        • et al.
        Local release of C-reactive protein from vulnerable plaque or coronary arterial wall injured by stenting.
        J Am Coll Cardiol. 2005; 46: 239-245
        • Volanakis J.E.
        Complement activation by C-reactive protein complexes.
        Ann N Y Acad Sci. 1982; 389: 235-250
        • Volanakis J.E.
        • Wirtz K.W.
        Interaction of C-reactive protein with artificial phosphatidylcholine bilayers.
        Nature. 1979; 281: 155-157
        • Chang M.K.
        • Binder C.J.
        • Torzewski M.
        • Witztum J.L.
        C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids.
        Proc Natl Acad Sci U S A. 2002; 99: 13043-13048
        • Zwaka T.P.
        • Hombach V.
        • Torzewski J.
        C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis.
        Circulation. 2001; 103: 1194-1197
        • Bhakdi S.
        • Torzewski M.
        • Klouche M.
        • Hemmes M.
        Complement and atherogenesis: binding of CRP to degraded, nonoxidized LDL enhances complement activation.
        Arterioscler Thromb Vasc Biol. 1999; 19: 2348-2354
        • Devaraj S.
        • Kumaresan P.R.
        • Jialal I.
        Effect of C-reactive protein on chemokine expression in human aortic endothelial cells.
        J Mol Cell Cardiol. 2004; 36: 405-410
        • Bharadwaj D.
        • Stein M.P.
        • Volzer M.
        • Mold C.
        • Du Clos T.W.
        The major receptor for C-reactive protein on leukocytes is fcgamma receptor II.
        J Exp Med. 1999 August 16; 190: 585-590
        • Bodman-Smith K.B.
        • Gregory R.E.
        • Harrison P.T.
        • Raynes J.G.
        FcgammaRIIa expression with FcgammaRI results in C-reactive protein- and IgG-mediated phagocytosis.
        J Leukoc Biol. 2004; 75: 1029-1035
        • Bodman-Smith K.B.
        • Melendez A.J.
        • Campbell I.
        • Harrison P.T.
        • Allen J.M.
        • Raynes J.G.
        C-reactive protein-mediated phagocytosis and phospholipase D signalling through the high-affinity receptor for immunoglobulin G (FcgammaRI).
        Immunology. 2002; 107: 252-260
        • Tebo J.M.
        • Mortensen R.F.
        Characterization and isolation of a C-reactive protein receptor from the human monocytic cell line U-937.
        J Immunol. 1990; 144: 231-238
        • Stein M.P.
        • Edberg J.C.
        • Kimberly R.P.
        • et al.
        C-reactive protein binding to FcgammaRIIa on human monocytes and neutrophils is allele-specific.
        J Clin Invest. 2000; 105: 369-376
        • Manolov D.E.
        • Rocker C.
        • Hombach V.
        • Nienhaus G.U.
        • Torzewski J.
        Ultrasensitive confocal fluorescence microscopy of C-reactive protein interacting with FcgammaRIIa.
        Arterioscler Thromb Vasc Biol. 2004; 24: 2372-2377
        • Devaraj S.
        • Du Clos T.W.
        • Jialal I.
        Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1359-1363
        • Mineo C.
        • Gormley A.K.
        • Yuhanna I.S.
        • et al.
        Fc{gamma}RIIB Mediates C-Reactive Protein Inhibition of Endothelial NO Synthase.
        Circ Res. 2005;
        • Hundt M.
        • Zielinska-Skowronek M.
        • Schmidt R.E.
        Lack of specific receptors for C-reactive protein on white blood cells.
        Eur J Immunol. 2001; 31: 3475-3483
        • Saeland E.
        • van R.A.
        • Hendriksen K.
        • et al.
        Human C-reactive protein does not bind to FcgammaRIIa on phagocytic cells.
        J Clin Invest. 2001; 107: 641-643
        • Williams T.N.
        • Zhang C.X.
        • Game B.A.
        • He L.
        • Huang Y.
        C-reactive protein stimulates MMP-1 expression in U937 histiocytes through Fc[gamma]RII and extracellular signal-regulated kinase pathway:: an implication of CRP involvement in plaque destabilization.
        Arterioscler Thromb Vasc Biol. 2004; 24: 61-66
        • Lim M.Y.
        • Wang H.
        • Kapoun A.M.
        • et al.
        p38 Inhibition attenuates the pro-inflammatory response to C-reactive protein by human peripheral blood mononuclear cells.
        J Mol Cell Cardiol. 2004; 37: 1111-1114
        • Lin R.
        • Liu J.
        • Peng N.
        • Yang G.
        • Gan W.
        • Wang W.
        Lovastatin reduces nuclear factor kappaB activation induced by C-reactive protein in human vascular endothelial cells.
        Biol Pharm Bull. 2005; 28: 1630-1634
        • Devaraj S.
        • Davis B.
        • Simon S.I.
        • Jialal I.
        CRP Promotes Monocyte-Endothelial Cell Adhesion via Fc gamma receptors in Human Aortic Endothelial Cells under Static and Shear Flow Conditions.
        Am J Physiol Heart Circ Physiol. 2006; 291: H1170-H1176
        • Wang C.H.
        • Li S.H.
        • Weisel R.D.
        • et al.
        C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle.
        Circulation. 2003; 107: 1783-1790
        • Hattori Y.
        • Matsumura M.
        • Kasai K.
        Vascular smooth muscle cell activation by C-reactive protein.
        Cardiovasc Res. 2003; 58: 186-195
        • Blaschke F.
        • Bruemmer D.
        • Yin F.
        • et al.
        C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells.
        Circulation. 2004; 110: 579-587
        • Verma S.
        • Li S.H.
        • Badiwala M.V.
        • et al.
        Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein.
        Circulation. 2002; 105: 1890-1896
        • Venugopal S.K.
        • Devaraj S.
        • Yuhanna I.
        • Shaul P.
        • Jialal I.
        Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells.
        Circulation. 2002; 106: 1439-1441
        • Bisoendial R.J.
        • Kastelein J.J.
        • Levels J.H.
        • et al.
        Activation of inflammation and coagulation after infusion of C-reactive protein in humans.
        Circ Res. 2005; 96: 714-716
        • Verma S.
        • Wang C.H.
        • Li S.H.
        • et al.
        A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis.
        Circulation. 2002; 106: 913-919
        • Qamirani E.
        • Ren Y.
        • Kuo L.
        • Hein T.W.
        C-reactive protein inhibits endothelium-dependent NO-mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase.
        Arterioscler Thromb Vasc Biol. 2005; 25: 995-1001
        • Venugopal S.K.
        • Devaraj S.
        • Jialal I.
        C-reactive protein decreases prostacyclin release from human aortic endothelial cells.
        Circulation. 2003; 108: 1676-1678
        • Li L.
        • Roumeliotis N.
        • Sawamura T.
        • Renier G.
        C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction.
        Circ Res. 2004; 95: 877-883
        • Clapp B.R.
        • Hirschfield G.M.
        • Storry C.
        • et al.
        Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability.
        Circulation. 2005; 111: 1530-1536
        • Bisoendial R.J.
        • Kastelein J.J.
        • Peters S.L.
        • et al.
        Effects of CRP-infusion on endothelial function and coagulation in normo- and hypercholesterolemic subjects.
        J Lipid Res. 2007; 48: 952-960
        • Kalka C.
        • Masuda H.
        • Takahashi T.
        • et al.
        Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization..
        Proc Natl Acad Sci U S A. 2000; 97: 3422-3427
        • Vasa M.
        • Fichtlscherer S.
        • Aicher A.
        • et al.
        Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.
        Circ Res. 2001; 89: E1-E7
        • Verma S.
        • Kuliszewski M.A.
        • Li S.H.
        • et al.
        C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease.
        Circulation. 2004; 109: 2058-2067
        • Suh W.
        • Kim K.L.
        • Choi J.H.
        • et al.
        C-reactive protein impairs angiogenic functions and decreases the secretion of arteriogenic chemo-cytokines in human endothelial progenitor cells.
        Biochem Biophys Res Commun. 2004; 321: 65-71
        • Burke A.P.
        • Tracy R.P.
        • Kolodgie F.
        • et al.
        Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies.
        Circulation. 2002; 105: 2019-2023
        • Takano M.
        • Inami S.
        • Ishibashi F.
        • et al.
        Angioscopic follow-up study of coronary ruptured plaques in nonculprit lesions.
        J Am Coll Cardiol. 2005; 45: 652-658
        • Abe N.
        • Osanai T.
        • Fujiwara T.
        • Kameda K.
        • Matsunaga T.
        • Okumura K.
        C-reactive protein-induced upregulation of extracellular matrix metalloproteinase inducer in macrophages: inhibitory effect of fluvastatin.
        Life Sci. 2006; 78: 1021-1028
        • Montero I.
        • Orbe J.
        • Varo N.
        • et al.
        C-reactive protein induces matrix metalloproteinase-1 and -10 in human endothelial cells: implications for clinical and subclinical atherosclerosis.
        J Am Coll Cardiol. 2006; 47: 1369-1378
        • Shah P.K.
        • Galis Z.S.
        Matrix metalloproteinase hypothesis of plaque rupture: players keep piling up but questions remain.
        Circulation. 2001; 104: 1878-1880
        • Moreau M.
        • Brocheriou I.
        • Petit L.
        • Ninio E.
        • Chapman M.J.
        • Rouis M.
        Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque.
        Circulation. 1999; 99: 420-426
        • Cermak J.
        • Key N.S.
        • Bach R.R.
        • Balla J.
        • Jacob H.S.
        • Vercellotti G.M.
        C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor.
        Blood. 1993; 82: 513-520
        • Paffen E.
        • Vos H.L.
        • Bertina R.M.
        C-reactive protein does not directly induce tissue factor in human monocytes.
        Arterioscler Thromb Vasc Biol. 2004; 24: 975-981
        • Cirillo P.
        • Golino P.
        • Calabro P.
        • et al.
        C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation.
        Cardiovasc Res. 2005; 68: 47-55
        • Devaraj S.
        • Xu D.Y.
        • Jialal I.
        C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis.
        Circulation. 2003; 107: 398-404
        • Singh U.
        • Devaraj S.
        • Jialal I.
        C-Reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells. Evidence that c-reactive protein is a procoagulant.
        Arterioscler Thromb Vasc Biol. 2005;
        • Pietila K.
        • Harmoinen A.
        • Teppo A.M.
        Acute phase reaction, infarct size and in-hospital morbidity in myocardial infarction patients treated with streptokinase or recombinant tissue type plasminogen activator.
        Ann Med. 1991; 23: 529-535
        • Kroop I.G.
        • Shackman N.H.
        Level of C-reactive protein as a measure of acute myocardial infarction.
        Proc Soc Exp Biol Med. 1954; 86: 95-97
        • Kushner I.
        • Kaplan M.H.
        Studies of acute phase protein. I. An immunohistochemical method for the localization of Cx-reactive protein in rabbits. Association with necrosis in local inflammatory lesions.
        J Exp Med. 1961; 114: 961-974
        • Nijmeijer R.
        • Lagrand W.K.
        • Lubbers Y.T.
        • et al.
        C-reactive protein activates complement in infarcted human myocardium.
        Am J Pathol. 2003; 163: 269-275
        • Griselli M.
        • Herbert J.
        • Hutchinson W.L.
        • et al.
        C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction.
        J Exp Med. 1999; 190: 1733-1740
        • Pepys M.B.
        • Hirschfield G.M.
        • Tennent G.A.
        • et al.
        Targeting C-reactive protein for the treatment of cardiovascular disease.
        Nature. 2006; 440: 1217-1221
        • van den Berg C.W.
        • Taylor K.E.
        • Lang D.
        C-reactive protein-induced in vitro vasorelaxation is an artefact caused by the presence of sodium azide in commercial preparations.
        Arterioscler Thromb Vasc Biol. 2004; 24: e168-e171
        • Liu C.
        • Wang S.
        • Deb A.
        • et al.
        Proapoptotic, antimigratory, antiproliferative, and antiangiogenic effects of commercial C-reactive protein on various human endothelial cell types in vitro: implications of contaminating presence of sodium azide in commercial preparation.
        Circ Res. 2005; 97: 135-143
        • Taylor K.E.
        • Giddings J.C.
        • van den Berg C.W.
        C-reactive protein-induced in vitro endothelial cell activation is an artefact caused by azide and lipopolysaccharide.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1225-1230
        • Pepys M.B.
        • Hawkins P.N.
        • Kahan M.C.
        • et al.
        Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself.
        Circ Res. 2005; 97: e97-e103
        • Sternik L.
        • Samee S.
        • Schaff H.V.
        • et al.
        C-reactive protein relaxes human vessels in vitro.
        Arterioscler Thromb Vasc Biol. 2002; 22: 1865-1868
        • Swafford Jr., A.N.
        • Bratz I.N.
        • Knudson J.D.
        • et al.
        C-reactive protein does not relax vascular smooth muscle: effects mediated by sodium azide in commercially available preparations.
        Am J Physiol Heart Circ Physiol. 2005; 288: H1786-H1795
        • Oroszlan M.
        • Herczenik E.
        • Rugonfalvi-Kiss S.
        • et al.
        Proinflammatory changes in human umbilical cord vein endothelial cells can be induced neither by native nor by modified CRP.
        Int Immunol. 2006; 18: 871-878