Advertisement
Research Article| Volume 195, ISSUE 2, e76-e84, December 2007

Native C-reactive protein induces endothelial dysfunction in ApoE−/− mice: Implications for iNOS and reactive oxygen species

      Abstract

      Objective

      In addition to being a risk marker for cardiovascular disease, recent data suggests that C-reactive protein (CRP) induces endothelial dysfunction and promotes oxidative stress. We evaluated the effects of two conformers of CRP (pentameric, or native [nCRP], versus monomeric, or modified [mCRP]) on vessel function and production of reactive oxygen species (ROS) in an in-vivo model of atherosclerosis.

      Methods and Results

      Female ApoE−/− mice, fed a “western-type” diet, were treated with either human nCRP or mCRP (2.5 mg/kg s.c., weekly) or saline for 8 weeks. Endothelium-dependent and endothelium-independent vascular functions were assessed in isolated aortic rings under isometric conditions. Production of ROS in aortic rings was measured by electron spin resonance (ESR). Endothelium-dependent relaxation was impaired in nCRP-treated but not in mCRP-treated ApoE−/− mice. This impairment was reversed by preincubation with an inhibitor of inducible nitric oxide synthase (iNOS). Endothelium-independent relaxation, and iNOS and endothelial NOS (eNOS) protein expressions were similar among all groups. ESR experiments revealed lesser amounts of superoxide in the nCRP group as compared to the saline group, which is consistent with an increased transformation of NO to peroxynitrite.

      Conclusions

      nCRP can facilitate cardiovascular disease through impairment of endothelium-dependent vasoreactivity, in a manner that involves increased iNOS activity and a potential for increased peroxynitrite formation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Pepys M.B.
        • Baltz M.L.
        Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein.
        Adv Immunol. 1983; 34: 141-212
        • Ridker P.M.
        Clinical application of C-reactive protein for cardiovascular disease detection and prevention.
        Circulation. 2003; 107: 363-369
        • Harrison D.G.
        Cellular and molecular mechanisms of endothelial cell dysfunction.
        J Clin Invest. 1997; 100: 2153-2157
        • Nathan C.
        • Xie Q.W.
        Regulation of biosynthesis of nitric oxide.
        J Biol Chem. 1994; 269: 13725-13728
        • Wilcox J.N.
        • Subramanian R.R.
        • Sundell C.L.
        • et al.
        Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels.
        Arterioscler Thromb Vasc Biol. 1997; 17: 2479-2488
        • Vasquez-Vivar J.
        • Kalyanaraman B.
        • Martasek P.
        • et al.
        Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
        Proc Natl Acad Sci U S A. 1998; 95: 9220-9225
        • Kuzkaya N.
        • Weissmann N.
        • Harrison D.G.
        • Dikalov S.
        Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase.
        J Biol Chem. 2003; 278: 22546-22554
        • Schwedler S.B.
        • Filep J.G.
        • Galle J.
        • Wanner C.
        • Potempa L.A.
        C-reactive protein: a family of proteins to regulate cardiovascular function.
        Am J Kidney Dis. 2006; 47: 212-222
        • Schwedler S.B.
        • Amann K.
        • Wernicke K.
        • et al.
        Native C-reactive protein increases whereas modified C-reactive protein reduces atherosclerosis in apolipoprotein E-knockout mice.
        Circulation. 2005; 112: 1016-1023
        • Khreiss T.
        • Jozsef L.
        • Potempa L.A.
        • Filep J.G.
        Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils.
        Circ Res. 2005; 97: 690-697
        • Nauck M.
        • Winkler K.
        • Marz W.
        • Wieland H.
        Quantitative determination of high-, low-, and very-low-density lipoproteins and lipoprotein(a) by agarose gel electrophoresis and enzymatic cholesterol staining.
        Clin Chem. 1995; 41: 1761-1767
        • Schwedler S.B.
        • Guderian F.
        • Dammrich J.
        • Potempa L.A.
        • Wanner C.
        Tubular staining of modified C-reactive protein in diabetic chronic kidney disease.
        Nephrol Dial Transplant. 2003; 18: 2300-2307
        • Ying S.C.
        • Gewurz H.
        • Kinoshita C.M.
        • Potempa L.A.
        • Siegel J.N.
        Identification and partial characterization of multiple native and neoantigenic epitopes of human C-reactive protein by using monoclonal antibodies.
        J Immunol. 1989; 143: 221-228
        • Quaschning T.
        • D’Uscio L.V.
        • Shaw S.
        • Luscher T.F.
        Vasopeptidase inhibition exhibits endothelial protection in salt-induced hypertension.
        Hypertension. 2001; 37: 1108-1113
        • Dikalov S.
        • Skatchkov M.
        • Bassenge E.
        Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxy-pyrrolidine and 1-hydroxy-2,2,6, 6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants.
        Biochem Biophys Res Commun. 1997; 231: 701-704
        • Zeiher A.M.
        • Drexler H.
        • Wollschlager H.
        • Just H.
        Modulation of coronary vasomotor tone in humans Progressive endothelial dysfunction with different early stages of coronary atherosclerosis.
        Circulation. 1991; 83: 391-401
        • Fichtlscherer S.
        • Rosenberger G.
        • Walter D.H.
        • Breuer S.
        • Dimmeler S.
        • Zeiher A.M.
        Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease.
        Circulation. 2000; 102: 1000-1006
        • Bisoendial R.J.
        • Kastelein J.J.
        • Levels J.H.
        • et al.
        Activation of inflammation and coagulation after infusion of C-reactive protein in humans.
        Circ Res. 2005; 96: 714-716
        • Sternik L.
        • Samee S.
        • Schaff H.V.
        • et al.
        C-reactive protein relaxes human vessels in vitro.
        Arterioscler Thromb Vasc Biol. 2002; 22: 1865-1868
        • Swafford Jr., A.N.
        • Bratz I.N.
        • Knudson J.D.
        • et al.
        C-reactive protein does not relax vascular smooth muscle: effects mediated by sodium azide in commercially available preparations.
        Am J Physiol Heart Circ Physiol. 2005; 288: H1786-H1795
        • Verma S.
        • Wang C.H.
        • Li S.H.
        • et al.
        A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis.
        Circulation. 2002; 106: 913-919
        • Venugopal S.K.
        • Devaraj S.
        • Yuhanna I.
        • Shaul P.
        • Jialal I.
        Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells.
        Circulation. 2002; 106: 1439-1441
        • Mineo C.
        • Gormley A.K.
        • Yuhanna I.S.
        • et al.
        FcgammaRIIB mediates C-reactive protein inhibition of endothelial NO synthase.
        Circ Res. 2005; 97: 1124-1131
        • Hattori Y.
        • Matsumura M.
        • Kasai K.
        Vascular smooth muscle cell activation by C-reactive protein.
        Cardiovasc Res. 2003; 58: 186-195
        • Venugopal S.K.
        • Devaraj S.
        • Jialal I.
        C-reactive protein decreases prostacyclin release from human aortic endothelial cells.
        Circulation. 2003; 108: 1676-1678
        • Wang C.H.
        • Li S.H.
        • Weisel R.D.
        • et al.
        C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle.
        Circulation. 2003; 107: 1783-1790
        • Fujii H.
        • Li S.H.
        • Szmitko P.E.
        • Fedak P.W.
        • Verma S.
        C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2476-2482
        • Villeneuve N.
        • Fortuno A.
        • Sauvage M.
        • et al.
        Persistence of the nitric oxide pathway in the aorta of hypercholesterolemic apolipoprotein-E-deficient mice.
        J Vasc Res. 2003; 40: 87-96
        • Deeb R.S.
        • Shen H.
        • Gamss C.
        • et al.
        Inducible nitric oxide synthase mediates prostaglandin h2 synthase nitration and suppresses eicosanoid production.
        Am J Pathol. 2006; 168: 349-362
        • Hink U.
        • Oelze M.
        • Kolb P.
        • et al.
        Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance.
        J Am Coll Cardiol. 2003; 42: 1826-1834
        • Sausbier M.
        • Schubert R.
        • Voigt V.
        • et al.
        Mechanisms of NO/cGMP-dependent vasorelaxation.
        Circ Res. 2000; 87: 825-830
        • Clapp B.R.
        • Hirschfield G.M.
        • Storry C.
        • et al.
        Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability.
        Circulation. 2005; 111: 1530-1536
        • Qamirani E.
        • Ren Y.
        • Kuo L.
        • Hein T.W.
        C-reactive protein inhibits endothelium-dependent NO-mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase.
        Arterioscler Thromb Vasc Biol. 2005; 25: 995-1001
        • Laursen J.B.
        • Somers M.
        • Kurz S.
        • et al.
        Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin.
        Circulation. 2001; 103: 1282-1288
        • Kuhlencordt P.J.
        • Chen J.
        • Han F.
        • Astern J.
        • Huang P.L.
        Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice.
        Circulation. 2001; 103: 3099-3104
        • Miyoshi T.
        • Li Y.
        • Shih D.M.
        • et al.
        Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice.
        Life Sci. 2006; 79: 525-531
        • Bisoendial R.J.
        • Kastelein J.J.
        • Peters S.L.
        • et al.
        Effects of CRP infusion on endothelial function and coagulation in normocholesterolemic and hypercholesterolemic subjects.
        J Lipid Res. 2007; 48: 952-960
        • Paul A.
        • Ko K.W.
        • Li L.
        • et al.
        C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice.
        Circulation. 2004; 109: 647-655
        • Hirschfield G.M.
        • Gallimore J.R.
        • Kahan M.C.
        • et al.
        Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice.
        Proc Natl Acad Sci U S A. 2005; 102: 8309-8314
        • Suresh M.V.
        • Singh S.K.
        • Ferguson Jr., D.A.
        • Agrawal A.
        Human C-reactive protein protects mice from streptococcus pneumoniae infection without binding to pneumococcal C-polysaccharide.
        J Immunol. 2007; 178: 1158-1163
        • Motie M.
        • Schaul K.W.
        • Potempa L.A.
        Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice.
        Drug Metab Dispos. 1998; 26: 977-981
        • Rodriguez W.
        • Mold C.
        • Kataranovski M.
        • Hutt J.
        • Marnell L.L.
        • Du Clos T.W.
        Reversal of ongoing proteinuria in autoimmune mice by treatment with C-reactive protein.
        Arthritis Rheum. 2005; 52: 642-650
        • Rodriguez W.
        • Mold C.
        • Kataranovski M.
        • et al.
        C-reactive protein-mediated suppression of nephrotoxic nephritis: role of macrophages, complement, and Fcgamma receptors.
        J Immunol. 2007; 178: 530-538
        • Klein T.C.
        • Doffinger R.
        • Pepys M.B.
        • Ruther U.
        • Kyewski B.
        Tolerance and immunity to the inducible self-antigen C-reactive protein in transgenic mice.
        Eur J Immunol. 1995; 25: 3489-3495
        • Sjowall C.
        • Wettero J.
        Pathogenic implications for autoantibodies against C-reactive protein and other acute phase proteins.
        Clin Chim Acta. 2007; 378: 13-23
        • Figueredo M.A.
        • Rodriguez A.
        • Ruiz-Yague M.
        • et al.
        Autoantibodies against C-reactive protein: clinical associations in systemic lupus erythematosus and primary antiphospholipid syndrome.
        J Rheumatol. 2006; 33: 1980-1986