Advertisement

Ceramide: A common pathway for atherosclerosis?

  • Jean Bismuth
    Affiliations
    Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
    Search for articles by this author
  • Peter Lin
    Affiliations
    Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
    Search for articles by this author
  • Qizhi Yao
    Affiliations
    Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
    Search for articles by this author
  • Changyi Chen
    Correspondence
    Corresponding author at: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Mail Stop: NAB-2010, Houston, TX 77030, United States. Tel.: +1 713 798 4401; fax: +1 713 798 6633.
    Affiliations
    Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
    Search for articles by this author

      Abstract

      Plasma sphingomyelin concentration is correlated with the development of atherosclerosis. It has been found to exist in significantly higher concentrations in aortic plaque. This appears to have clinical relevance as well as it has been shown to be an independent predictor of coronary artery disease. Ceramide, the backbone of sphingolipids, is the key component which affects atherosclerotic changes through its important second-messenger role. This paper sheds light on some of the current literature supporting the significance of ceramide with respect to its interactions with lipids, inflammatory cytokines, homocysteine and matrix metalloproteinases. Furthermore, the potential therapeutic implications of modulating ceramide concentrations are also discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jiang X.C.
        • Paultre F.
        • Pearson T.A.
        • et al.
        Plasma sphingomyelin level as a risk factor for coronary artery disease.
        Arterioscler Thromb Vasc Biol. 2000; 20: 2614-2618
        • Schissel S.L.
        • Tweedie-Hardman J.
        • Rapp J.H.
        • et al.
        Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins.
        J Clin Invest. 1996; 98: 1455-1464
        • Li Z.
        • Basterr M.J.
        • Hailemariam T.K.
        • et al.
        The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis.
        Biochim Biophys Acta. 2005; 1735: 130-134
        • Tabas I.
        • Li Y.
        • Brocia R.W.
        • et al.
        Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation.
        J Biol Chem. 1993; 268: 20419-20432
        • Schissel S.L.
        • Jiang X.
        • Tweedie-Hardman J.
        • et al.
        Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development.
        J Biol Chem. 1998; 273: 2738-2746
        • Xu X.X.
        • Tabas I.
        Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages.
        J Biol Chem. 1991; 266: 24849-24858
        • Kolesnick R.N.
        Sphingomyelin and derivatives as cellular signals.
        Prog Lipid Res. 1991; 30: 1-38
        • Spiegel S.
        • Merrill Jr., A.H.
        Sphingolipid metabolism and cell growth regulation.
        FASEB J. 1996; 10: 1388-1397
        • Merrill Jr., A.H.
        • Schmelz E.M.
        • Dillehay D.L.
        • et al.
        Sphingolipids—the enigmatic lipid class: biochemistry, physiology, and pathophysiology.
        Toxicol Appl Pharmacol. 1997; 142: 208-225
        • Marchesini N.
        • Hannun Y.A.
        Acid and neutral sphingomyelinases: roles and mechanisms of regulation.
        Biochem Cell Biol. 2004; 82: 27-44
        • Futerman A.H.
        • van Meer G.
        The cell biology of lysosomal storage disorders.
        Nat Rev Mol Cell Biol. 2004; 5: 554-565
        • Jeong T.
        • Schissel S.L.
        • Tabas I.
        • et al.
        Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase.
        J Clin Invest. 1998; 101: 905-912
        • Hoff H.F.
        • Morton R.E.
        Lipoproteins containing apo B extracted from human aortas. Structure and function.
        Ann N Y Acad Sci. 1985; 454: 183-194
        • Chatterjee S.
        Sphingolipids in atherosclerosis and vascular biology.
        Arterioscler Thromb Vasc Biol. 1998; 18: 1523-1533
        • Chatterjee S.
        • Kwiterovich P.O.
        Glycosphingolipids of human plasma lipoproteins.
        Lipids. 1976; 11: 462-466
        • Dawson G.
        • Kruski A.W.
        • Scanu A.M.
        Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias.
        J Lipid Res. 1976; 17: 125-131
        • Prokazova N.V.
        • Mukhin D.N.
        • Orekhov A.N.
        • et al.
        Neutral glycolipids of atherosclerotic plaques and unaffected human aorta tissue.
        Eur J Biochem. 1989; 180: 167-171
        • Ichi I.
        • Nakahara K.
        • Kiso K.
        • Kojo S.
        Effect of dietary cholesterol and high fat on ceramide concentration in rat tissues.
        Nutrition. 2007; 23: 570-574
        • Grandl M.
        • Bared S.M.
        • Liebisch G.
        • et al.
        E-LDL and Ox-LDL differentially regulate ceramide and cholesterol raft microdomains in human macrophages.
        Cytometry A. 2006; 69: 189-191
        • Arimoto I.
        • Saito H.
        • Kawashima Y.
        • et al.
        Effects of sphingomyelin and cholesterol on lipoprotein lipase-mediated lipolysis in lipid emulsions.
        J Lipid Res. 1998; 39: 143-151
        • Bhagat K.
        • Vallance P.
        Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo.
        Circulation. 1997; 96: 3042-3047
        • Nakamura M.
        • Yoshida H.
        • Arakawa N.
        • et al.
        Effects of tumor necrosis factor-alpha on basal and stimulated endothelium-dependent vasomotion in human resistance vessel.
        J Cardiovasc Pharmacol. 2000; 36: 487-492
        • Wang P.
        • Ba Z.F.
        • Chaudry I.H.
        Administration of tumor necrosis factor-alpha in vivo depresses endothelium-dependent relaxation.
        Am J Physiol. 1994; 266: H2535-H2541
        • Xu J.
        • Yeh C.H.
        • Chen S.
        • et al.
        Involvement of de novo ceramide biosynthesis in tumor necrosis factor-alpha/cycloheximide-induced cerebral endothelial cell death.
        J Biol Chem. 1998; 273: 16521-16526
        • Modur V.
        • Zimmerman G.A.
        • Prescott S.M.
        • McIntyre T.M.
        Endothelial cell inflammatory responses to tumor necrosis factor alpha. Ceramide-dependent and -independent mitogen-activated protein kinase cascades.
        J Biol Chem. 1996; 271: 13094-13102
        • Sawada M.
        • Kiyono T.
        • Nakashima S.
        • et al.
        Molecular mechanisms of TNF-alpha-induced ceramide formation in human glioma cells: P53-mediated oxidant stress-dependent and -independent pathways.
        Cell Death Differ. 2004; 11: 997-1008
        • Hannun Y.A.
        Functions of ceramide in coordinating cellular responses to stress.
        Science. 1996; 274: 1855-1859
        • Liu B.
        • Andrieu-Abadie N.
        • Levade T.
        • et al.
        Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death.
        J Biol Chem. 1998; 273: 11313-11320
        • Singh I.
        • Pahan K.
        • Khan M.
        • Singh A.K.
        Cytokine-mediated induction of ceramide production is redox-sensitive.
        J Biol Chem. 1998; 273: 20354-20362
        • Garcia-Ruiz C.
        • Colell A.
        • Mari M.
        • et al.
        Direct effects of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species.
        J Biol Chem. 1997; 272: 11369-11377
        • Zhang D.X.
        • Zou A.P.
        • Li P.L.
        Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries.
        Am J Physiol Heart Circ Physiol. 2003; 284: H605-H612
        • Zhang D.X.
        • Fryer R.M.
        • Hsu A.K.
        • et al.
        Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats.
        Basic Res Cardiol. 2001; 96: 267-274
        • Memon R.A.
        • Bass N.M.
        • Moser A.H.
        • et al.
        Down-regulation of liver and heart specific fatty acid binding proteins by endotoxin and cytokines in vivo.
        Biochim Biophys Acta. 1999; 1440: 118-126
        • Blake G.J.
        • Ridker P.M.
        Novel clinical markers of vascular wall inflammation.
        Circ Res. 2001; 89: 763-771
        • Hirokawa M.
        • Kitabayashi A.
        • Kuroki J.
        • Miura A.B.
        Induction of tissue factor production but not the upregulation of adhesion molecule expression by ceramide in human vascular endothelial cells.
        Tohoku J Exp Med. 2000; 191: 167-176
        • Gu Q.
        • Yang X.P.
        • Bonde P.
        • et al.
        Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog.
        J Cardiovasc Pharmacol. 2006; 48: 320-328
        • Siragy H.M.
        • Xue C.
        • Webb R.L.
        Beneficial effects of combined benazepril-amlodipine on cardiac nitric oxide, cGMP, and TNF-alpha production after cardiac ischemia.
        J Cardiovasc Pharmacol. 2006; 47: 636-642
        • Csiszar A.
        • Labinskyy N.
        • Smith K.
        • et al.
        Vasculoprotective effects of anti-tumor necrosis factor-{alpha} treatment in aging.
        Am J Path. 2007; 170: 388-398
        • Csiszar A.
        • Smith K.
        • Labinskyy N.
        • et al.
        Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-kappaB inhibition.
        Am J Physiol Heart Circ Physiol. 2006; 291: H1694-H1699
        • Ito H.
        • Koide N.
        • Hassan F.
        • et al.
        Lethal endotoxic shock using alpha-galactosylceramide sensitization as a new experimental model of septic shock.
        Lab Invest. 2006; 86: 254-261
        • Hürlimann D.
        • Forster A.
        • Noll G.
        • et al.
        Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumatoid arthritis.
        Circulation. 2002; 106: 2184-2187
        • Booth A.D.
        • Jayne D.R.
        • Kharbanda R.K.
        • et al.
        Infliximab improves endothelial dysfunction in systemic vasculitis: a model of vascular inflammation.
        Circulation. 2004; 109: 1718-1723
        • Graham I.M.
        • Daly L.E.
        • Refsum H.M.
        • et al.
        Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project.
        JAMA. 1997; 277: 1775-1781
        • Taylor Jr., L.M.
        • Moneta G.L.
        • Sexton G.J.
        • et al.
        Prospective blinded study of the relationship between plasma homocysteine and progression of symptomatic peripheral arterial disease.
        J Vasc Surg. 1999; 29: 8-19
        • Yang Z.Z.
        • Zou A.P.
        Homocysteine enhances TIMP-1 expression and cell proliferation associated with NADH oxidase in rat mesangial cells.
        Kidney Int. 2003; 63: 1012-1020
        • Yi F.
        • Zhang A.Y.
        • Janscha J.L.
        • et al.
        Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells.
        Kidney Int. 2004; 66: 1977-1987
        • Yi F.
        • Zhang A.Y.
        • Li N.
        • et al.
        Inhibition of ceramide-redox signaling pathway blocks glomerular injury in hyperhomocysteinemic rats.
        Kidney Int. 2006; 70: 88-96
        • Galis Z.S.
        • Khatri J.J.
        Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly.
        Circ Res. 2002; 90: 251-262
        • Ikeda U.
        • Shimada K.
        Matrix metalloproteinases and coronary artery diseases.
        Clin Cardiol. 2003; 26: 55-59
        • Lijnen H.R.
        Extracellular proteolysis in the development and progression of atherosclerosis.
        Biochem Soc Trans. 2002; 30: 163-167
        • Xu X.P.
        • Meisel S.R.
        • Ong J.M.
        • et al.
        Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages.
        Circulation. 1999; 99: 993-998
        • Rajavashisth T.B.
        • Liao J.K.
        • Galis Z.S.
        • et al.
        Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase.
        J Biol Chem. 1999; 274: 11924-11929
        • Huang Y.
        • Song L.
        • Wu S.
        • et al.
        Oxidized LDL differentially regulates MMP-1 and TIMP-1 expression in vascular endothelial cells.
        Atherosclerosis. 2001; 156: 119-125
        • Auge N.
        • Maupas-Schwalm F.
        • Elbaz M.
        • et al.
        Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.
        Circulation. 2004; 110: 571-578
        • Izgi C.
        • Cevik C.
        • Ozkan M.
        • et al.
        Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.
        Circulation. 2005; 111: e38-e39
        • Huwiler A.
        • Kolter T.
        • Pfeilschifter J.
        • Sandhoff K.
        Physiology and pathophysiology of sphingolipid metabolism and signaling.
        Biochim Biophys Acta. 2000; 31: 63-99
        • Hernandez O.M.
        • Discher D.J.
        • Bishopric N.H.
        • Webster K.
        Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes.
        Circ Res. 2000; 86: 198-204
        • Li H.
        • Junk P.
        • Huwiler A.
        • et al.
        Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase.
        Circulation. 2002; 106: 2250-2256
        • Yeh L.H.
        • Kinsey A.M.
        • Chatterjee S.
        • Alevriadou B.R.
        Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression.
        J Vas Res. 2001; 38: 551-559
        • Williams R.D.
        • Wang E.
        • Merrill Jr., A.H.
        Enzymology of long-chain base synthesis by liver: characterization of serine palmitoyltransferase in rat liver microsomes.
        Arch Biochem Biophys. 1984; 228: 282-291
        • Pchejetski D.
        • Kunduzova O.
        • Dayon A.
        • et al.
        Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis.
        Circ Res. 2007; 100: 41-49
        • Bielawska A.E.
        • Shapiro J.P.
        • Jiang L.
        • et al.
        Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion.
        Am J Path. 1997; 151: 1257-1263
        • Bandyopadhyay D.
        • Chattopadhyay A.
        • Ghosh G.
        • Datta A.G.
        Oxidative stress-induced ischemic heart disease: protection by antioxidants.
        Cur Med Chem. 2004; 11: 369-387
        • Bolli R.
        Basic and clinical aspects of myocardial stunning.
        Prog Cardiovasc Dis. 1998; 40: 477-516
        • Kunduzova O.R.
        • Bianchi P.
        • Parini A.
        • Cambon C.
        Hydrogen peroxide production by monoamine oxidase during ischemia/reperfusion.
        Eur J Pharm. 2002; 448: 225-230
        • Spiegel S.
        • Milstien S.
        Sphingosine-1-phosphate: an enigmatic signalling lipid.
        Nature Rev. 2003; 4: 397-407
        • Karliner J.S.
        • Honbo N.
        • Summers K.
        • et al.
        The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes.
        J Mol Cell Cardiol. 2001; 33: 1713-1717
        • Olivera A.
        • Kohama T.
        • Edsall L.
        • et al.
        Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival.
        J Cell Biol. 1999; 147: 545-558
        • Jin Z.Q.
        • Goetzl E.J.
        • Karliner J.S.
        Sphingosine kinase activation mediates ischemic preconditioning in murine heart.
        Circulation. 2004; 110: 1980-1989
        • Zhang D.X.
        • Zou A.P.
        • Li P.L.
        Ceramide reduces endothelium-dependent vasodilation by increasing superoxide production in small bovine coronary arteries.
        Circ Res. 2001; 88: 824-831
        • Mogami K.
        • Kishi H.
        • Kobayashi S.
        Sphingomyelinase causes endothelium-dependent vasorelaxation through endothelial nitric oxide production without cytosolic Ca(2+) elevation.
        FEBS Lett. 2005; 579: 393-397
        • Igarashi J.
        • Thatte H.S.
        • Prabhakar P.
        • Golan D.E.
        • Michel T.
        Calcium-independent activation of endothelial nitric oxide synthase by ceramide.
        Proc Natl Acad Sci U S A. 1999; 96: 12583-12588
        • Bulotta S.
        • Barsacchi R.
        • Rotiroti D.
        • et al.
        Activation of the endothelial nitric-oxide synthase by tumor necrosis factor-α. A novel feedback mechanism regulating cell death.
        J Biol Chem. 2001; 276: 6529-6536
        • Igarashi J.
        • Thatte H.S.
        • Prabhakar P.
        • et al.
        Calcium-independent activation of endothelial nitric oxide synthase by ceramide.
        Proc Natl Acad Sci U S A. 1999; 96: 12583-12588
        • Bhunia A.K.
        • Han H.
        • Snowden A.
        • Chatterjee S.
        Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells.
        J Biol Chem. 1997; 272: 15642-15649
        • Harada-Shiba M.
        • Kinoshita M.
        • Kamido H.
        • Shimokado K.
        Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms.
        J Biol Chem. 1998; 273: 9681-9687
        • Hein T.W.
        • Kuo L.
        LDLs impair vasomotor function of the coronary microcirculation: role of superoxide anions.
        Circ Res. 1998; 83: 404-414
        • Merrill Jr., A.H.
        • Wang E.
        • Stevens J.
        • Brumley G.W.
        Activities of the initial enzymes of glycerolipid and sphingolipid synthesis in lung microsomes from rats exposed to air or 85% oxygen.
        Biochem Biophys Res Commun. 1984; 119: 995-1000
        • Williams R.D.
        • Sgoutas D.S.
        • Zaatari G.S.
        Enzymology of long-chain base synthesis by aorta: induction of serine palmitoyltransferase activity in rabbit aorta during atherogenesis.
        J Lipid Res. 1986; 27: 763-770
        • Fujita T.
        • Inoue K.
        • Yamamoto S.
        • et al.
        Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite.
        J Antibiotics. 1994; 47: 208-215
        • Chen J.K.
        • Lane W.S.
        • Schreiber S.L.
        The identification of myriocin-binding proteins.
        Chem Biol. 1999; 6: 221-235
        • Park T.S.
        • Panek R.L.
        • Mueller S.B.
        • et al.
        Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice.
        Circulation. 2004; 110: 3465-3471
        • Park T.S.
        • Panek R.L.
        • Rekhter M.D.
        • et al.
        Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice.
        Atherosclerosis. 2006; 189: 264-272
        • Hojjati M.R.
        • Li Z.
        • Zhou H.
        • et al.
        Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice.
        J Biol Chem. 2005; 280: 10284-10289
        • Nordestgaard B.G.
        • Gronholdt M.L.
        • Sillesen H.
        Echolucent rupture-prone plaques.
        Curr Opin Lipidol. 2003; 14: 505-512
        • Tabas I.
        Sphingolipids and atherosclerosis: a mechanistic connection? A therapeutic opportunity?.
        Circulation. 2004; 110: 3400-3401
        • Li J.J.
        • Zheng X.
        • Li J.
        Statins may be beneficial for patients with slow coronary flow syndrome due to its anti-inflammatory property.
        Med Hypotheses. 2007; 69: 333-337
        • Osto E.
        • Coppolino G.
        • Volpe M.
        • Cosentino F.
        Restoring the dysfunctional endothelium.
        Curr Pharm Des. 2007; 13: 1053-1068
        • Chen S.D.
        • Hu C.J.
        • Yang D.I.
        • et al.
        Pravastatin attenuates ceramide-induced cytotoxicity in mouse cerebral endothelial cells with HIF-1 activation and VEGF upregulation.
        Ann N Y Acad Sci. 2005; 1042: 357-364
        • Mathias S.
        • Pena L.A.
        • Kolesnick R.N.
        Signal transduction of stress via ceramide.
        Biochem J. 1998; 335: 465-480
        • Brenner B.
        • Koppenhoefer U.
        • Weinstock C.
        • et al.
        Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153.
        J Biol Chem. 1997; 272: 22173-22181
        • Shabahang S.
        • Liu Y.H.
        • Huwiler A.
        • Pfeilschifter J.
        Identification of the LIM kinase-1 as a ceramide-regulated gene in renal mesangial cells.
        Biochem Biophys Res Commun. 2002; 298: 408-413