Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives


      The most common omega-3 fatty acids contain 18–22 carbons and a signature double bond at the third position from the methyl (or n, or omega) end of the molecule. These fatty acids must be obtained in the diet as they cannot be synthesized by vertebrates. They include the plant-derived α-linolenic acid (ALA, 18:3n-3), and the fish-oil-derived eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). Normally, very little ALA is converted to EPA, and even less to DHA, and therefore direct intake of the latter two is optimal. EPA and DHA and their metabolites have important biologic functions, including effects on membranes, eicosanoid metabolism, and gene transcription. Studies indicate that the use of fish oil is associated with coronary heart disease risk reduction. A number of mechanisms may be responsible for such effects. These include prevention of arrhythmias as well as lowering heart rate and blood pressure, decreasing platelet aggregation, and lowering triglyceride levels. The latter is accomplished by decreasing the production of hepatic triglycerides and increasing the clearance of plasma triglycerides. Our focus is to review the potential mechanisms by which these fatty acids reduce cardiovascular disease risk.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Mozaffarian D.
        • Rimm E.B.
        Fish intake, contaminants, and human health: evaluating the risks and the benefits.
        JAMA. 2006; 296: 1885-1889
        • Calder P.C.
        n-3 fatty acids and cardiovascular disease: evidence explained and mechanisms explored.
        Clin Sci. 2004; 107: 1-11
        • Hokanson J.E.
        • Austin M.A.
        Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies.
        J Cardiovasc Risk. 1996; 3: 213-219
        • Jeppesen J.
        • Hein H.
        • Suadicani P.
        • Gyntelberg F.
        Triglyceride concentration and ischemic heart disease—an eight-year follow-up in the Copenhagen Male Study.
        Circulation. 1998; 97: 1029-1036
      1. Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 2002,106:3143–421.

        • Harris W.
        • Ginsberg H.
        • Arunakul N.
        • et al.
        Safety and efficacy of Omacor in severe hypertriglyceridemia.
        J Cardiovasc Risk. 1997; 4: 385-391
        • Harris W.
        n-3 fatty acids and serum lipoproteins: human studies.
        Am J Clin Nutr. 1997; 65: 1645S-1654S
      2. Lovaza® [package insert]. Liberty Corner, NJ: Reliant Pharmaceuticals, Inc. 2007.

        • Pownall H.
        • Brauchi D.
        • Kilinc C.
        • et al.
        Correlation of serum triglyceride and its reduction by ω-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins.
        Atherosclerosis. 1999; 143: 285-297
        • Chan D.
        • Watts G.
        • Beilin L.
        • Redgrave T.
        • Mori T.
        Regulatory effects of HMG CoA reductase inhibitor and fish oils on apolipoprotein B-100 kinetics in insulin-resistant obese male subjects with dyslipidemia.
        Diabetes. 2002; 51: 2377-2386
        • Ginsberg H.N.
        • Le N.A.
        • Gibson J.C.
        Regulation of the production and catabolism of plasma low density lipoproteins in hypertriglyceridemic subjects. Effect of weight loss.
        J Clin Invest. 1985; 75: 614-623
        • Lada A.T.
        • Rudel L.L.
        • StClair R.W.
        Effects of LDL enriched with different dietary fatty acids on cholesteryl ester accumulation and turnover in THP-1 macrophages.
        J Lipid Res. 2003; 44: 770-779
        • Parks J.S.
        • Gebre A.K.
        Studies on the effect of dietary fish oil on the physical and chemical properties of low density lipoproteins in cynomolgus monkeys.
        J Lipid Res. 1991; 32: 305-315
        • Parks J.S.
        • Bullock B.C.
        Effect of fish oil versus lard diets on the chemical and physical properties of low density lipoproteins of nonhuman primates.
        J Lipid Res. 1987; 28: 173-182
        • Jump D.
        Fatty acid regulation of gene transcription.
        Crit Rev Clin Lab Sci. 2004; 41: 41-78
        • Sampath H.
        • Ntambi J.
        Polyunsaturated fatty acid regulation of gene expression.
        Nutr Rev. 2004; 62: 333-339
        • Bezard J.
        • Blond J.
        • Bernard A.
        • Clouet P.
        The metabolism and availability of essential fatty acids in animal and human tissues.
        Semin Nephrol. 1994; 34: 539-568
        • Neuringer M.
        • Anderson G.J.
        • Connor W.E.
        The essentiality of n-3 fatty acids for the development and function of the retina and brain.
        Annu Rev Nutr. 1988; 8: 517-541
        • Neuringer M.
        • Connor W.E.
        • Lin D.S.
        • Barstad L.
        • Luck S.
        Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys.
        Proc Natl Acad Sci USA. 1986; 83: 4021-4025
        • Soderberg M.
        • Edlund C.
        • Kristensson K.
        • Dallner G.
        Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease.
        Lipids. 1991; 26: 421-425
        • Conquer J.A.
        • Tierney M.C.
        • Zecevic J.
        • Bettger W.J.
        • Fisher R.H.
        Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment.
        Lipids. 2000; 35: 1305-1312
        • Tully A.M.
        • Roche H.M.
        • Doyle R.
        • et al.
        Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer's disease: a case–control study.
        Br J Nutr. 2003; 89: 483-489
        • Heude B.
        • Ducimetiere P.
        • Berr C.
        Cognitive decline and fatty acid composition of erythrocyte membranes—the EVA study.
        Am J Clin Nutr. 2003; 77: 803-808
        • Kalmijn S.
        • van Boxtel M.P.
        • Ocke M.
        • et al.
        Dietary intake of fatty acids and fish in relation to cognitive performance at middle age.
        Neurology. 2004; 62: 275-280
        • Morris M.C.
        • Evans D.A.
        • Bienias J.L.
        • et al.
        Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease.
        Arch Neurol. 2003; 60: 940-946
        • Morris M.C.
        • Evans D.A.
        • Tangney C.C.
        • Bienias J.L.
        • Wilson R.S.
        Fish consumption and cognitive decline with age in a large community study.
        Arch Neurol. 2005; 62: 1849-1853
        • Huang T.L.
        • Zandi P.P.
        • Tucker K.L.
        • et al.
        Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4.
        Neurology. 2005; 65: 1409-1414
        • Schaefer E.J.
        • Bongard V.
        • Beiser A.S.
        • et al.
        Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study.
        Arch Neurol. 2006; 63: 1545-1550
        • Calon F.
        • Lim G.P.
        • Yang F.
        • et al.
        Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model.
        Neuron. 2004; 43: 633-645
        • Freund-Levi Y.
        • Eriksdotter-Jonhagen M.
        • Cederholm T.
        • et al.
        Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial.
        Arch Neurol. 2006; 63: 1402-1408
        • Kotani S.
        • Sakaguchi E.
        • Warashina S.
        • et al.
        Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction.
        Neurosci Res. 2006; 56: 159-164
        • Cole G.M.
        • Frautschy S.A.
        Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer's disease mouse model.
        Nutr Health. 2006; 18: 249-259
        • Uauy R.
        • Dangour A.
        Nutrition in brain development and aging: role of essential fatty acids.
        Nutr Rev. 2006; 64: S24-S33
        • Johnson E.J.
        • Schaefer E.J.
        Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration.
        Am J Clin Nutr. 2006; 83: 1494S-1498S
        • Erkkila A.T.
        • Matthan N.R.
        • Herrington D.M.
        • Lichtenstein A.H.
        Higher plasma docosahexaenoic acid is associated with reduced progression of coronary atherosclerosis in women with CAD.
        J Lipid Res. 2006; 47: 2814-2819
        • Harris W.
        Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review.
        J Lipid Res. 1989; 30: 785-807
        • Park Y.
        • Harris W.S.
        Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance.
        J Lipid Res. 2003; 44: 455-463
        • Miller M.
        • Motevalli M.
        • Westphal D.
        • Kwiterovich Jr., P.O.
        Incorporation of oleic acid and eicosapentaenoic acid into glycerolipids of cultured normal human fibroblasts.
        Lipids. 1993; 28: 1-5
        • Harris W.
        • Bulchandani D.
        Why do omega-3 fatty acids lower serum triglycerides?.
        Curr Opin Lipidol. 2006; 17: 387-393
        • Parks J.S.
        • Johnson F.L.
        • Wilson M.D.
        • Rudel L.L.
        Effect of fish oil diet on hepatic lipid metabolism in nonhuman primates: lowering of secretion of hepatic triglyceride but not apoB.
        J Lipid Res. 1990; 31: 455-466
        • Parks J.S.
        • Wilson M.D.
        • Johnson F.L.
        • Rudel L.L.
        Fish oil decreases hepatic cholesteryl ester secretion but not apoB secretion in African green monkeys.
        J Lipid Res. 1989; 30: 1535-1544
        • Fisher E.A.
        • Pan M.
        • Chen X.
        • et al.
        The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways.
        J Biol Chem. 2001; 276: 27855-27863
        • Jump D.B.
        The biochemistry of n-3 polyunsaturated fatty acids.
        J Biol Chem. 2002; 277: 8755-8758
        • Ren B.
        • Thelen A.
        • Peters J.
        • Gonzalez F.
        • Jump D.
        Polyunsaturated fatty acid suppression of hepatic fatty acid. Synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha.
        J Biol Chem. 1997; 272: 26827-26832
        • Horton J.
        • Bashmakov Y.
        • Shimomura I.
        • Shimano H.
        Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice.
        Proc Natl Acad Sci USA. 1998; 95: 5987-5992
        • Le Jossic-Corcos C.
        • Gonthier C.
        • Zaghini I.
        • et al.
        Hepatic farnesyl diphosphate synthase expression is suppressed by polyunsaturated fatty acids.
        Biochem J. 2005; 385: 787-794
        • Yoshikawa T.
        • Shimano H.
        • Yahagi N.
        • et al.
        Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements.
        J Biol Chem. 2002; 277: 1705-1711
        • Zaima N.
        • Sugawara T.
        • Goto D.
        • Hirata T.
        Trans geometric isomers of EPA decrease LXRalpha-induced cellular triacylglycerol via suppression of SREBP-1c and PGC-1beta.
        J Lipid Res. 2006; 47: 2712-2717
        • Davidson M.
        Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids.
        Am J Card. 2006; 98: 27i-33i
        • Yu-Poth S.
        • Yin D.
        • Kris-Etherton P.M.
        • Zhao G.
        • Etherton T.D.
        Long-chain polyunsaturated fatty acids upregulate LDL receptor protein expression in fibroblasts and HepG2 cells.
        J Nutr. 2005; 135: 2541-2545
        • Edwards P.A.
        • Kast H.R.
        • Anisfeld A.M.
        BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis.
        J Lipid Res. 2002; 43: 2-12
        • Sirvent A.
        • Claudel T.
        • Martin G.
        • et al.
        The farnesoid X receptor induces very low density lipoprotein receptor gene expression.
        FEBS Lett. 2004; 566: 173-177
        • Sirvent A.
        • Verhoeven A.J.
        • Jansen H.
        • et al.
        Farnesoid X receptor represses hepatic lipase gene expression.
        J Lipid Res. 2004; 45: 2110-2115
        • Kast H.R.
        • Nguyen C.M.
        • Sinal C.J.
        • et al.
        Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids.
        Mol Endocrinol. 2001; 15: 1720-1728
        • Claudel T.
        • Inoue Y.
        • Barbier O.
        • et al.
        Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression.
        Gastroenterology. 2003; 125: 544-555
        • Sinal C.J.
        • Tohkin M.
        • Miyata M.
        • et al.
        Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.
        Cell. 2000; 102: 731-744
        • Zhao A.
        • Yu J.
        • Lew J.L.
        • et al.
        Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets.
        DNA Cell Biol. 2004; 23: 519-526
        • Gimeno R.E.
        Fatty acid transport proteins.
        Curr Opin Lipidol. 2007; 18: 271-276
        • Dagnelie P.
        • Rietveld T.
        • Swart G.
        • Stijnen T.
        • van den Berg J.
        Effect of dietary fish oil on blood levels of free fatty acids, ketone bodies and triacylglycerol in humans.
        Lipids. 1994; 29: 41-45
        • Khan S.
        • Minihane A.M.
        • Talmud P.J.
        • et al.
        Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype.
        J Lipid Res. 2002; 43: 979-985
        • Chambrier C.
        • Bastard J.P.
        • Rieusset J.
        • et al.
        Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor gamma.
        Obes Res. 2002; 10: 518-525
        • Leibowitz M.D.
        • Fievet C.
        • Hennuyer N.
        • et al.
        Activation of PPARdelta alters lipid metabolism in db/db mice.
        FEBS Lett. 2000; 473: 333-336
        • Durrington P.
        • Bhatnagar D.
        • Mackness M.
        • et al.
        An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia.
        Heart. 2001; 85: 544-548
        • Nordoy A.
        • Bonaa K.
        • Nilsen H.
        • et al.
        Effects of simvastatin and omega-3 fatty acids in plasma lipoproteins and lipid peroxidation in patients with combined hyperlipidaemia.
        J Intern Med. 1998; 243: 163-170
        • Leaf A.
        • Kang J.
        • Xiao Y.
        • Billman G.
        Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils.
        Circulation. 2003; 107: 2646-2652
        • Leaf A.
        • Albert C.
        • Josephson M.
        • et al.
        Prevention of fatal arrythmias in high-risk subjects by fish oil n-3 fatty acids.
        Circulation. 2005; 112: 2762-2768
        • GISSI-Prevenzione Investigators
        Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial.
        Lancet. 1999; 354: 447-455
        • Kris-Etherton P.
        • Harris W.
        • Appel L.
        American Heart Association (AHA) and AHA Nutrition Committee, Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease.
        Circulation. 2002; 106: 2747-2757
        • Yokoyama M.
        • Origasa H.
        • Matsuzaki M.
        • et al.
        Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.
        Lancet. 2007; 369: 1090-1098
        • Rudel L.L.
        • Parks J.S.
        • Hedrick C.C.
        • Thomas M.
        • Williford K.
        Lipoprotein and cholesterol metabolism in diet-induced coronary artery atherosclerosis in primates. Role of cholesterol and fatty acids.
        Prog Lipid Res. 1998; 37: 353-370
        • Imazio M.
        • Forno D.
        • Quaglia C.
        • Trinchero R.
        Omega-3 polyunsaturated fatty acids role in postmyocardial infarction therapy.
        Panminerva Med. 2003; 45: 99-107
        • Reiffel J.
        • McDonald A.
        Antiarrhythmic effects of omega-3 fatty acids.
        Am J Cardiol. 2006; 98: 50i-60i
        • Harris W.
        • Sands S.
        • Windsor S.
        • et al.
        Omega-3 fatty acid levels in transplanted human hearts: effect of supplementation and comparison with erythrocytes.
        Circulation. 2004; 110: 1645-1649
        • Caló L.
        • Bianconi L.
        • Colivicchi F.
        • et al.
        n-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized controlled trial.
        J Am Coll Cardiol. 2005; 45: 1723-1728
        • Dhein S.
        • Michaelis B.
        • Mohr F.W.
        Antiarrhythmic and electrophysiological effects of long-chain omega-3 polyunsaturated fatty acids.
        Naunyn Schmiedebergs Arch Pharmacol. 2005; 371: 202-211
        • Xiao Y.F.
        • Kang J.X.
        • Morgan J.P.
        • Leaf A.
        Blocking effects of polyunsaturated fatty acids on Na + channels of neonatal rat ventricular myocytes.
        Proc Natl Acad Sci USA. 1995; 92: 11000-11004
        • Raitt M.
        • Connor W.
        • Morris C.
        • et al.
        Fish oil supplementation and risk of ventricular tachycardia and ventricular fibrillation in patients with implantable defibrillators: a randomized controlled trial.
        JAMA. 2005; 293: 2884-2891
        • Brouwer I.
        • Zock P.
        • Bocker D.
        • et al.
        Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: the study on omega-3 fatty acids and ventricular arrhythmia (SOFA) randomized trial.
        JAMA. 2006; 295: 2613-2619
        • Harris W.S.
        Expert opinion: omega-3 fatty acids and bleeding-cause for concern?.
        Am J Cardiol. 2007; 99: S44-S46
        • Thies F.
        • Garry J.
        • Yaqoob P.
        • et al.
        Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial.
        Lancet. 2003; 361: 477-485
        • Geleijnse J.
        • Giltay E.
        • Grobbee D.
        • Donders A.
        • Kok F.
        Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials.
        J Hypertens. 2002; 20: 1493-1499
        • Nestel P.
        • Shige H.
        • Pomeroy S.
        • et al.
        The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans.
        Am J Clin Nutr. 2002; 76: 326-330
        • Chin J.P.
        • Dart A.M.
        How do fish oils affect vascular function?.
        Clin Exp Pharmacol Physiol. 1995; 22: 71-81
        • Mozaffarian D.
        • Geelen A.
        • Brouwer I.
        • et al.
        Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials.
        Circulation. 2005; 112: 1945-1952
        • Harper C.
        • Jacobson T.
        An evidence-based approach to the use of combination drug therapy for mixed dyslipidemia.
        J Clin Outcomes Manage. 2006; 13: 57-68