Lipid transfer proteins: Past, present and perspectives


      Lipid transfer proteins (PLTP and CETP) play roles in atherogenesis by modifying the arterial intima cholesterol content via altering the concentration and function of plasma lipoproteins and influencing inflammation. In this regard, endotoxins impair the reverse cholesterol transport (RCT) system in an endotoxemic rodent model, supporting a pro-inflammatory role of HDL reported in chronic diseases where atherosclerosis is premature. High PLTP activity related to atherosclerosis in some clinical studies, but the mechanisms involved could not be ascertained. In experimental animals the relation of elevated plasma PLTP concentration with atherosclerosis was confounded by HDL-C lowering and by unfavorable effects on several inflammatory markers. Coincidently, PLTP also increases in human experimental endotoxemia and in clinical sepsis. Human population investigations seem to favor low CETP as atheroprotective; this is supported by animal models where overexpression of huCETP is atherogenic, most likely due to increased concentration of apoB-lipoprotein-cholesterol. Thus, in spite of CETP facilitating the HDL-C-mediated RCT, the reduction of apoB-LP-cholesterol concentration is the probable antiatherogenic mechanism of CETP inhibition. On the other hand, experimental huCETP expression protects mice from the harmful effects of a bacterial polysaccharide infusion and the mortality rate of severely ill patients correlates with reduction of the plasma CETP concentration. Thus, the roles played by PLTP and CETP on atherosclerosis and acute inflammation seem contradictory. Therefore, the biological roles of PLTP and CETP must be carefully monitored when investigating drugs that inhibit their activity in the prevention of atherosclerosis.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lepper P.M.
        • Schumann C.
        • Triantafilou K.
        • et al.
        Association of lipopolysaccharide-binding protein and coronary artery disease in men.
        J Am Coll Cardiol. 2007; 50: 25-31
        • Stoll L.L.
        • Denning G.M.
        • Weintraub N.L.
        Potential role of endotoxin as a proinflammatory mediator of atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2004; 24: 2227-2236
        • Masson D.
        • Jiang X.C.
        • Lagrost L.
        • Tall A.R.
        The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis.
        J Lipid Res. 2009; 50: S201-S206
        • Vesy C.J.
        • Kitchens R.L.
        • Wolfbauer G.
        • Albers J.J.
        • Munford R.S.
        Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from gram-negative bacterial membranes.
        Infect Immun. 2000; 68: 2410-2417
        • Hailman E.
        • Albers J.J.
        • Wolfbauer G.
        • Tu A.Y.
        • Wright S.D.
        Neutralization and transfer of lipopolysaccharide by phospholipid transfer protein.
        J Biol Chem. 1996; 271: 12172-12178
        • Wurfel M.M.
        • Kunitake S.T.
        • Lichenstein H.
        • Kane J.P.
        • Wright S.D.
        Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS.
        J Exp Med. 1994; 180: 1025-1035
        • Barlage S.
        • Fröhlich D.
        • Böttcher A.
        • et al.
        ApoE-containing high density lipoproteins and phospholipid transfer protein activity increase in patients with a systemic inflammatory response.
        J Lipid Res. 2001; 42: 281-290
        • Vuletic S.
        • Taylor B.A.
        • Tofler G.H.
        • et al.
        PLTP activity in plasma of periodontal patients before and after full-mouth tooth extraction.
        Oral Dis. 2008; 14: 514-519
        • Gautier T.
        • Klein A.
        • Deckert V.
        • et al.
        Effect of plasma phospholipid transfer protein deficiency on lethal endotoxemia in mice.
        J Biol Chem. 2008; 283: 18702-18710
        • Cazita P.M.
        • Barbeiro D.F.
        • Moretti A.I.S.
        • Quintão E.C.R.
        • Soriano F.G.
        CETP expression enhances the mouse survival rate in an experimental systemic inflammation model: a novel role for CETP.
        Shock. 2008; 30: 590-595
        • Cazita P.M.
        • Salerno A.G.
        • Ferreira F.D.
        • Nunes V.S.
        • Oliveira K.S.
        • Soriano F.G.
        • Quintão E.C.R.
        Abstract 5539: human CETP expression promotes the plasma clearance and hepatic uptake of lipopolysaccharide.
        Circulation. 2008; 118 (S_570b)
        • Stein O.
        • Stein Y.
        Lipid transfer proteins (LTP) and athrerosclerosis.
        Atherosclerosis. 2005; 178: 217-230
        • Jiang X.C.
        • Zhou H.W.
        Plasma lipid transfer proteins.
        Curr Opin Lipidol. 2006; 17: 302-308
        • Tzotzas T.
        • Desrumaux C.
        • Lagrost L.
        Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor.
        Obes Rev. 2009; 10: 403-411
        • Magkos F.
        • Mohammed B.S.
        • Mittendorfer B.
        Plasma lipid transfer enzymes in non-diabetic lean and obese men and women.
        Lipids. 2009; 44: 459-464
        • Yamashita S.
        • Sakai N.
        • Hirano K.
        • et al.
        Roles of plasma lipid transfer proteins in reverse cholesterol transport.
        Front Biosci. 2001; 6: D366-D387
        • Silver D.L.
        • Jiang X.C.
        • Arai T.
        • Bruce C.
        • Tall A.R.
        Receptors and lipid transfer proteins in HDL metabolism.
        Ann N Y Acad Sci. 2000; 902: 103-111
        • O’Brien K.D.
        • Vuletic S.
        • McDonald T.O.
        • et al.
        Cell-associated and extracellular phospholipid transfer protein in human coronary atherosclerosis.
        Circulation. 2003; 108: 270-274
        • Schlitt A.
        • Blankenberg S.
        • Bickel C.
        • et al.
        Phospholipid transfer protein activity is a risk factor for subsequent cardiovascular events in coronary artery disease patients under statin therapy: the atherogene study.
        J Lipid Res. 2009; 50: 723-729
        • Schlitt A.
        • Bickel C.
        • Thumma P.
        • et al.
        High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1857-1862
        • de Vries R.
        • Dallinga-Thie G.M.
        • Smit A.J.
        • Wolffenbuttel B.H.
        • van Tol A.
        • Dullaart R.P.
        Elevated plasma phospholipid transfer protein activity is a determinant of carotid intima-media thickness in type 2 diabetes mellitus.
        Diabetologia. 2006; 49: 398-404
        • Tan K.C.
        • Shiu S.W.
        • Wong Y.
        • Tam S.
        Plasma phospholipid transfer protein activity and subclinical inflammation in type 2 diabetes mellitus.
        Atherosclerosis. 2005; 178: 365-370
        • Schgoer W.
        • Mueller T.
        • Jauhiainen M.
        • et al.
        Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis.
        Atherosclerosis. 2008; 196: 219-226
        • Yatsuya H.
        • Tamakoshi K.
        • Hattori H.
        • et al.
        Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases.
        Circ J. 2004; 68: 11-16
        • Thompson A.
        • Di Angelantonio E.
        • Sarwar N.
        • et al.
        Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk.
        JAMA. 2008; 299: 2777-2788
        • Tsai M.Y.
        • Johnson C.
        • Kao W.H.
        • et al.
        Cholesteryl ester transfer protein genetic polymorphisms, HDL cholesterol, and subclinical cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis.
        Atherosclerosis. 2008; 200: 359-367
        • Hiura Y.
        • Shen C.S.
        • Kokubo Y.
        • Okamura T.
        • Morisaki T.
        • Tomoike H.
        • Yoshida T.
        • Sakamoto H.
        • Goto Y.
        • Nonogi H.
        • Iwai N
        Identification of genetic markers associated with high-density lipoprotein-cholesterol by genome-wide screening in a Japanese population.
        Circ J. 2009; 73: 1119-1126
        • Regieli J.J.
        • Jukema J.W.
        • Grobbee D.E.
        • et al.
        CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction.
        Eur Heart J. 2008; 29: 2792-2799
        • Pussinen P.J.
        • Metso J.
        • Malle E.
        • et al.
        The role of plasma phospholipid transfer protein (PLTP) in HDL remodeling in acute-phase patients.
        Biochim Biophys Acta. 2001; 28: 153-163
        • Van Haperen R.
        • Samyn H.
        • Moerland M.
        • et al.
        Elevated expression of phospholipid transfer protein in bone marrow derived cells causes atherosclerosis.
        PLoS ONE. 2008; 3: e2255
        • Navab M.
        • Anantharamaiah G.M.
        • Reddy S.T.
        • Van Lenten B.J.
        • Ansell B.J.
        • Fogelman A.M.
        Mechanisms of disease: proatherogenic HDL—an evolving field.
        Nat Clin Pract Endocrinol Metab. 2006; 2: 504-511
        • Ansell B.J.
        • Fonarow G.C.
        • Fogelman A.M.
        The paradox of dysfunctional high-density lipoprotein.
        Curr Opin Lipidol. 2007; 18: 427-434
        • Schlitt A.
        • Liu J.
        • Yan D.
        • Mondragon-Escorpizo M.
        • Norin A.J.
        • Jiang X.C.
        Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice.
        Biochim Biophys Acta. 2005; 1733: 187-191
        • Yan D.
        • Navab M.
        • Bruce C.
        • Fogelman A.M.
        • Jiang X.C.
        PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity.
        J Lipid Res. 2004; 45: 1852-1858
        • Jiang X.C.
        • Tall A.R.
        • Qin S.
        • et al.
        Phospholipid transfer protein deficiency protects circulating lipoproteins from oxidation due to the enhanced accumulation of vitamin E.
        J Biol Chem. 2002; 277: 31850-31856
        • Lie J.
        • de Crom R.
        • van Gent T.
        • et al.
        Elevation of plasma phospholipid transfer protein increases the risk of atherosclerosis despite lower apolipoprotein B-containing lipoproteins.
        J Lipid Res. 2004; 45: 805-811
        • Yang X.P.
        • Yan D.
        • Qiao C.
        • et al.
        Increased atherosclerotic lesions in apoE mice with plasma phospholipid transfer protein overexpression.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1601-1607
        • Valenta D.T.
        • Bulgrien J.J.
        • Bonnet D.J.
        • Curtiss L.K.
        Macrophage PLTP is atheroprotective in LDLr-deficient mice with systemic PLTP deficiency.
        J Lipid Res. 2008; 49: 24-32
        • Kosuge M.
        • Ebina T.
        • Ishikawa T.
        • et al.
        Serum amyloid A is a better predictor of clinical outcomes than C-reactive protein in non-ST-segment elevation acute coronary syndromes.
        Circ J. 2007; 71: 186-190
        • Yang R.Z.
        • Lee M.J.
        • Hu H.
        • et al.
        Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications.
        PLoS Med. 2006; 3: e287
        • Marotti K.R.
        • Castle C.K.
        • Boyle T.P.
        • Lin A.H.
        • Murray R.W.
        • Melchior G.W.
        Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein.
        Nature. 1993; 364: 73-75
        • Masucci-Magoulas L.
        • Plump A.
        • Jiang X.C.
        • Walsh A.
        • Breslow J.L.
        • Tall A.R.
        Profound induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals changes in plasma cholesterol levels.
        J Clin Invest. 1996; 97: 154-161
        • Zhou H.
        • Li Z.
        • Hojjati M.R.
        • et al.
        Adipose tissue-specific CETP expression in mice: impact on plasma lipoprotein metabolism.
        J Lipid Res. 2006; 47: 2011-2019
        • Bruce C.
        • Chouinard Jr., R.A.
        • Tall A.R.
        Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport.
        Annu Rev Nutr. 1998; 18: 297-330
        • Westerterp M.
        • van der Hoogt C.C.
        • de Haan W.
        • et al.
        Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2552-2559
      1. de Vries-van der Weij J, Zadelaar S, Toet K, Havekes LM, Kooistra T, Rensen PC. Human CETP aggravates atherosclerosis by increasing VLDL-cholesterol rather than by decreasing HDL-cholesterol in APOE*3-Leiden mice. Atherosclerosis. 2009 Mar 19. [Epub ahead of print].

        • Tall A.
        Plasma lipid transfer proteins.
        Annu Rev Biochem. 1995; 64: 235-257
        • Tsutsumi K.
        • Hagi A.
        • Inoue Y.
        The relationship between plasma high density lipoprotein cholesterol levels and cholesteryl ester transfer protein activity in six species of healthy experimental animals.
        Biol Pharm Bull. 2001; 24: 579-581
        • Casquero A.C.
        • Berti J.A.
        • Salerno A.G.
        • et al.
        Atherosclerosis is enhanced by testosterone deficiency and attenuated by CETP expression in transgenic mice.
        J Lipid Res. 2006; 47: 1526-1534
        • Cazita P.M.
        • Berti J.A.
        • Aoki C.
        • et al.
        Cholesteryl ester transfer protein expression attenuates atherosclerosis in ovariectomized mice.
        J Lipid Res. 2003; 44: 33-40
        • Kako Y.
        • Massé M.
        • Huang L.S.
        • Tall A.R.
        • Goldberg I.J.
        Lipoprotein lipase deficiency and CETP in streptozotocin-treated apoB-expressing mice.
        J Lipid Res. 2002; 43: 872-877
        • Hayek T.
        • Masucci-Magoulas L.
        • Jiang X.
        • et al.
        Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene.
        J Clin Invest. 1995; 96: 2071-2074
        • Hayek T.
        • Azrolan N.
        • Verdery R.B.
        • et al.
        Hypertriglyceridemia and cholesteryl ester transfer protein interact to dramatically alter high density lipoprotein levels, particle sizes, and metabolism. Studies in transgenic mice.
        J Clin Invest. 1993; 92: 1143-1152
        • Föger B.
        • Chase M.
        • Amar M.J.
        • et al.
        Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice.
        J Biol Chem. 1999; 274: 36912-36920
        • Harder C.
        • Lau P.
        • Meng A.
        • Whitman S.C.
        • McPherson R.
        Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice.
        Arterioscler Thromb Vasc Biol. 2007; 27: 858-864
        • Gauthier A.
        • Lau P.
        • Zha X.
        • Milne R.
        • McPherson R.
        Cholesteryl ester transfer protein directly mediates selective uptake of high density lipoprotein cholesteryl esters by the liver.
        Arterioscler Thromb Vasc Biol. 2005; 25: 2177-2184
        • Rotllan N.
        • Calpe-Berdiel L.
        • Guillaumet-Adkins A.
        • Süren-Castillo S.
        • Blanco-Vaca F.
        • Escolà-Gil J.C.
        CETP activity variation in mice does not affect two major HDL antiatherogenic properties: macrophage-specific reverse cholesterol transport and LDL antioxidant protection.
        Atherosclerosis. 2008; 196: 505-513
        • Tanigawa H.
        • Billheimer J.T.
        • Tohyama J.
        • Zhang Y.
        • Rothblat G.
        • Rader D.J.
        Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport.
        Circulation. 2007; 116: 1267-1273
        • Harada L.M.
        • Amigo L.
        • Cazita P.M.
        • et al.
        CETP expression enhances liver HDL-Cholesteryl ester uptake but does not alter VLDL and biliary lipid secretion.
        Atherosclerosis. 2007; 191: 313-318
        • Rocco D.
        • Catanozi S.
        • Okuda L.
        • et al.
        Aerobic exercise training improves the in vitro macrophage reverse cholesterol transport in wild type and in huCETPTG mice.
        in: Worshop III-1. Abstract 509. XV International Congress on Atherosclerosis, Boston. MA, USA, June 14–18.2009
        • Moerland M.
        • Samyn H.
        • van Gent T.
        • et al.
        Acute elevation of plasma PLTP activity strongly increases pre-existing atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2008; 28: 1277-1282
        • van Haperen R.
        • van Tol A.
        • van Gent T.
        • et al.
        Increased risk of atherosclerosis by elevated plasma levels of phospholipid transfer protein.
        J Biol Chem. 2002; 277: 48938-48943
        • Lie J.
        • Moerland M.
        • van Gent T.
        • et al.
        Sex differences in atherosclerosis in mice with elevated phospholipid transfer protein activity are related to decreased plasma high density lipoproteins and not to increased production of triglycerides.
        Biochim Biophys Acta. 2006; 1761: 1070-1077
        • Samyn H.
        • Moerland M.
        • van Gent T.
        • et al.
        Plasma phospholipid transfer activity is essential for increased atherogenesis in PLTP transgenic mice: a mutation-inactivation study.
        J Lipid Res. 2008; 49: 2504-2512
        • Liu R.
        • Hojjati M.R.
        • Devlin C.M.
        • Hansen I.H.
        • Jiang X.C.
        Macrophage phospholipid transfer protein deficiency and ApoE secretion: impact on mouse plasma cholesterol levels and atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2007; 27: 190-196
        • Valenta D.T.
        • Ogier N.
        • Bradshaw G.
        • et al.
        Atheroprotective potential of macrophage-derived phospholipid transfer protein in low-density lipoprotein receptor-deficient mice is overcome by apolipoprotein AI overexpression.
        Arterioscler Thromb Vasc Biol. 2006; 26: 1572-1578
        • Vikstedt R.
        • Ye D.
        • Metso J.
        • et al.
        Macrophage phospholipid transfer protein contributes significantly to total plasma phospholipid transfer activity and its deficiency leads to diminished atherosclerotic lesion development.
        Arterioscler Thromb Vasc Biol. 2007; 27: 578-586
        • Jiang X.C.
        • Qin S.
        • Qiao C.
        • et al.
        Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency.
        Nat Med. 2001; 7: 847-852
        • Jiang X.C.
        • Bruce C.
        • Mar J.
        • et al.
        Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels J.
        Clin Invest. 1999; 103: 907-914
        • Wolfbauer G.
        • Albers J.J.
        • Oram J.F.
        Phospholipid transfer protein enhances removal of cellular cholesterol and phospholipids by high-density lipoprotein apolipoproteins.
        Biochim Biophys Acta. 1999; 1439: 65-76
        • Samyn H.
        • Moerland M.
        • van Gent T.
        • et al.
        Elevation of systemic PLTP, but not macrophage-PLTP, impairs macrophage reverse cholesterol transport in transgenic mice.
        Atherosclerosis. 2009; 204: 429-434
        • Cheung M.C.
        • Brown B.G.
        • Marino Larsen E.K.
        • Frutkin A.D.
        • O’Brien K.D.
        • Albers J.J.
        Phospholipid transfer protein activity is associated with inflammatory markers in patients with cardiovascular disease.
        Biochim Biophys Acta. 2006; 1762: 131-137
        • Bossé Y.
        • Bouchard L.
        • Després J.P.
        • Bouchard C.
        • Pérusse L.
        • Vohl M.C.
        Haplotypes in the phospholipid transfer protein gene are associated with obesity-related phenotypes: the Québec Family Study.
        Int J Obes (Lond). 2005; 29: 1338-1345
        • Pussinen P.J.
        • Malle E.
        • Metso J.
        • Sattler W.
        • Raynes J.G.
        • Jauhiainen M.
        Acute-phase HDL in phospholipid transfer protein (PLTP)-mediated HDL conversion.
        Atherosclerosis. 2001; 155: 297-305
        • Levels J.H.
        • Pajkrt D.
        • Schultz M.
        • et al.
        Alterations in lipoprotein homeostasis during human experimental endotoxemia and clinical sepsis.
        Biochim Biophys Acta. 2007; 1771: 1429-1438
        • McGillicuddy F.C.
        • de la Llera Moya M.
        • Hinkle C.C.
        • et al.
        Inflammation impairs reverse cholesterol transport in vivo.
        Circulation. 2009; 119: 1135-1145
        • Brousseau M.E.
        • Diffenderfer M.R.
        • Millar J.S.
        • et al.
        Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A-I metabolism, and fecal sterol excretion.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1057-1064
        • Kee P.
        • Caiazza D.
        • Rye K.A.
        • Barrett P.H.
        • Morehouse L.A.
        • Barter P.J.
        Effect of inhibiting cholesteryl ester transfer protein on the kinetics of high-density lipoprotein cholesteryl ester transport in plasma: in vivo studies in rabbits.
        Arterioscler Thromb Vasc Biol. 2006; 26: 884-890
        • Tchoua U.
        • D'Souza W.
        • Mukhamedova N.
        • et al.
        The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport.
        Cardiovasc Res. 2008; 77: 732-739
        • Morehouse L.A.
        • Sugarman E.D.
        • Bourassa P.A.
        • et al.
        Inhibition of CETP activity by Torcetrapib reduces susceptibility to diet-induced atherosclerosis in NZW rabbits.
        J Lipid Res. 2007; 48: 1263-1267
        • de Haan W.
        • de Vries-van der Weij J.
        • van der Hoorn J.W.
        • et al.
        Torcetrapib does not reduce atherosclerosis beyond atorvastatin and induces more proinflammatory lesions than atorvastatin.
        Circulation. 2008; 117: 2515-2522
        • Barter P.J.
        • Caulfield M.
        • Eriksson M.
        • et al.
        Effects of Torcetrapib in patients at high risk for coronary events.
        N Engl J Med. 2007; 357 (the ILLUMINATE investigators): 2109-2122
        • Vergeer M.
        • Bots M.L.
        • van Leuven S.I.
        • et al.
        Cholesteryl ester transfer protein inhibitor Torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials.
        Circulation. 2008; 118: 2515-2522
        • Nicholls S.J.
        • Tuzcu E.M.
        • Brennan D.M.
        • Tardif J.C.
        • Nissen S.E.
        Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (investigation of lipid level management using coronary ultrasound to assess reduction of atherosclerosis by CEPT inhibition and HDL elevation).
        Circulation. 2008; 118: 2506-2514
        • Nissen S.E.
        • Tardif J.C.
        • Nicholls S.J.
        • et al.
        ILLUSTRATE Investigators. Effect of Torcetrapib on the progression of coronary atherosclerosis.
        N Engl J Med. 2007; 356: 1304-1316
        • Kastelein J.J.
        • van Leuven S.I.
        • Burgess L.
        • et al.
        Effect of Torcetrapib on carotid atherosclerosis in familial hypercholesterolemia.
        N Engl J Med. 2007; 356: 1620-1630
        • Yvan-Charvet L.
        • Matsuura F.
        • Wang N.
        • et al.
        Inhibition of cholesteryl ester transfer protein by Torcetrapib modestly increases macrophage cholesterol efflux to HDL.
        Arterioscler Thromb Vasc Biol. 2007; 27: 1132-1138
        • Catalano G.
        • Julia Z.
        • Frisdal E.
        • et al.
        Torcetrapib differentially modulates the biological activities of HDL2 and HDL3 particles in the reverse cholesterol transport pathway.
        Arterioscler Thromb Vasc Biol. 2009; 29: 268-275
        • Hardardóttir I.
        • Moser A.H.
        • Fuller J.
        • Fielding C.
        • Feingold K.
        • Grünfeld C.
        Endotoxin and cytokines decrease serum levels and extra hepatic protein and mRNA levels of cholesteryl ester transfer protein in syrian hamsters.
        J Clin Invest. 1996; 97: 2585-2592
        • Chien J.Y.
        • Jerng J.S.
        • Yu C.J.
        • Yang P.C.
        Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis.
        Crit Care Med. 2005; 33: 1688-1693
        • Jahangiri A.
        • de Beer M.C.
        • Noffsinger V.
        • et al.
        HDL remodeling during the acute phase response.
        Arterioscler Thromb Vasc Biol. 2009; 29: 261-267
        • Deguchi H.
        • Fernández J.A.
        • Griffin J.H.
        Plasma cholesteryl ester transfer protein and blood coagulability.
        Thromb Haemost. 2007; 98: 1160-1164