Advertisement

Therapeutic angiogenesis in diabetic apolipoprotein E-deficient mice using bone marrow cells, functional hemangioblasts and metabolic intervention

      Abstract

      Objective

      Peripheral arterial disease (PAD) is a major health problem especially when associated to concomitant diabetes and hypercholesterolemia. Hyperglycemia with an overwhelming generation of oxygen radicals and formation of glycation end-products exacerbates oxidation-sensitive mechanisms activated by tissue ischemia. Administration of autologous bone marrow cells (BMC) is an increasing notable intervention to induce therapeutic angiogenesis, ameliorated by metabolic intervention (MT). Recently, hemangioblasts (HS) with functional properties were isolated.

      Methods

      The effects of integrate regimen with intravenous BMC, HS, and MT (1.0% vitamin E, 0.05% vitamin C, and 6% l-arginine) were examined in the ischemic hindlimb of ApoE−/− diabetic and non-diabetic. Blood flow ratio was monitored by use of a laser Doppler blood flowmeter. Capillary density was determined in sections of the adductor and semimembranous muscles with antibody against CD31.

      Results

      BMC or HS alone, and BMC plus HS increased blood flow and capillary densities and decreased interstitial fibrosis. These effects were amplified by additional MT, at least in part, through the nitric oxide pathway, reduction of systemic oxidative stress and macrophage infiltration. Investigation of molecular mechanisms in bone marrow (BM)-derived progenitor cells from mice revealed that BMC therapy and, more consistently, in combination with MT ameliorated functional activity via decreased cellular senescence and increased telomerase and chemokine CXCR4 activities. Telomerase activity was also increased by HS alone or HS + MT and, more consistently, by BMC + HS alone or in combination with MT.

      Conclusions/interpretation

      Intravenous autologous BMC and HS intervention together with MT increased therapeutic angiogenesis in the ApoE−/− diabetic mouse hindlimb.

      Abbreviations:

      PAD (peripheral arterial disease), BMC (bone marrow cells), NO (nitric oxide), ApoE−/− (hypercholesterolemic apolipoprotein E knockout), MNCs (mononuclear cells), NOx (nitrite and nitrate), MT (metabolic treatment), IH (ischemic hindlimb), HS (hemangioblasts)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mohler 3rd, E.R.
        Therapy insight: peripheral arterial disease and diabetes-from pathogenesis to treatment guidelines.
        Nat Clin Pract Cardiovasc Med. 2007; 4: 151-162
        • Muhs B.E.
        • Gagne P.
        • Sheehan P.
        Peripheral arterial disease: clinical assessment and indications for revascularization in the patient with diabetes.
        Curr Diab Rep. 2005; 5: 24-29
        • Yla-Herttuala S.
        • Alitalo K.
        Gene transfer as a tool to induce therapeutic vascular growth.
        Nat Med. 2003; 9: 694-701
        • Rajagopalan S.
        • Olin J.
        • Deitcher S.
        • et al.
        Use of a constitutively active hypoxia-inducible factor-1α transgene as a therapeutic strategy in no-option critical limb ischemia patients. Phase I dose-escalation experience.
        Circulation. 2007; 115: 1234-1243
        • Lu S.J.
        • Feng Q.
        • Caballero S.
        • et al.
        Generation of functional hemangioblasts from human embryonic stem cells.
        Nat Methods. 2007; 4: 501-509
        • Chung Y.
        • Klimanskaya I.
        • Becker S.
        • et al.
        Human embryonic stem cell lines generated without embryo destruction.
        Cell Stem Cell. 2008; 2: 113-117
        • Napoli C.
        • Maione C.
        • Schiano C.
        • et al.
        Oxidation-specific mechanisms and cardiovascular repair induced by autologous bone marrow cell infusion.
        Trends Mol Med. 2007; 13: 278-286
        • Rafii S.
        • Lyden D.
        Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.
        Nat Med. 2003; 9: 702-712
        • Hamano K.
        • Li T.S.
        • Kobayashi T.
        • et al.
        The induction of angiogenesis by the implantation of autologous bone marrow cells: a novel and simple therapeutic method.
        Surgery. 2001; 130: 44-54
        • Hirata K.
        • Li T.S.
        • Nishida M.
        • et al.
        Autologous bone marrow cell implantation as therapeutic angiogenesis for ischemic hindlimb in diabetic rat model.
        Am J Physiol Heart Circ Physiol. 2003; 284: H66-70
        • Tamarat R.
        • Silvestre J.S.
        • Le Ricousse-Roussanne S.
        • et al.
        Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment.
        Am J Pathol. 2004; 164: 457-466
        • Urbán V.S.
        • Kiss J.
        • Kovács J.
        • et al.
        Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes.
        Stem Cells. 2007; 26: 244-253
        • Napoli C.
        • Williams-Ignarro S.
        • Byrns R.
        • et al.
        Therapeutic targeting of stem cell niche in experimental hindlimb ischemia.
        Nat Clin Pract Cardiovasc Med. 2008; 5: 571-579
        • Shintani S.
        • Murohara T.
        • Ikeda H.
        • et al.
        Augmentation of postnatal neovascularization with autologous bone marrow transplantation.
        Circulation. 2001; 103: 897-903
        • Iwase T.
        • Nagaya N.
        • Fujii T.
        • et al.
        Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia.
        Circulation. 2005; 111: 356-362
        • Miranville A.
        • Heeschen C.
        • Sengenès C.
        • et al.
        Improvement of postnatal neovascularization by human adipose tissue-derived stem cells.
        Circulation. 2004; 110: 349-355
        • Napoli C.
        • Williams-Ignarro S.
        • de Nigris F.
        • et al.
        Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb.
        Proc Natl Acad Sci USA. 2005; 102: 17202-17206
        • Tateishi-Yuyama E.
        • Matsubara H.
        • Murohara T.
        • et al.
        Therapeutic angiogenesis using cell transplantation (TACT) Study investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial.
        Lancet. 2002; 360: 427-435
        • Higashi Y.
        • Kimura M.
        • Hara K.
        • et al.
        Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia.
        Circulation. 2004; 109: 1215-1218
        • Bartsch T.
        • Brehm M.
        • Zeus T.
        • et al.
        Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study).
        Clin Res Cardiol. 2007; 96: 891-899
        • Napoli C.
        • Farzati B.
        • Sica V.
        • et al.
        Beneficial effects of autologous bone marrow cell infusion and antioxidants/l-arginine in patients with chronic critical limb ischemia.
        Eur J Cardiovasc Rehabil. 2008; 15: 709-718
        • Becker L.B.
        New concepts in reactive oxygen species and cardiovascular reperfusion physiology.
        Cardiovasc Res. 2004; 61: 461-470
        • de Nigris F.
        • Lerman A.
        • Ignarro L.J.
        • et al.
        Oxidation-sensitive mechanisms, vascular apoptosis and atherosclerosis.
        Trends Mol Med. 2003; 9: 351-359
        • de Nigris F.
        • Lerman L.O.
        • Ignarro S.W.
        • et al.
        Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress.
        Proc Natl Acad Sci USA. 2003; 100: 1420-1425
        • Tritto I.
        • Ambrosio G.
        Spotlight on microcirculation: an update.
        Cardiovasc Res. 1999; 42: 600-606
        • Napoli C.
        • Lerman L.O.
        • de Nigris F.
        • Loscalzo J.
        • Ignarro L.J.
        Glycoxidized low-density lipoprotein downregulates endothelial nitric oxide synthase in human coronary cells.
        J Am Coll Cardiol. 2002; 40: 1515-1522
        • Wautier J.L.
        • Schmidt A.M.
        Protein glycation: a firm link to endothelial cell dysfunction.
        Circ Res. 2004; 95: 233-238
        • Ignarro L.J.
        • Napoli C.
        Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis.
        Curr Diab Rep. 2005; 5: 17-23
        • Napoli C.
        • Sica V.
        • Pignalosa O.
        • de Nigris F.
        New trends in anti-atherosclerotic agents.
        Curr Med Chem. 2005; 12: 1755-1772
        • Cooke J.P.
        • Oka R.K.
        Atherogenesis and the arginine hypothesis.
        Curr Atheroscler Rep. 2001; 3: 252-259
        • Napoli C.
        • Williams-Ignarro S.
        • de Nigris F.
        • et al.
        Long-term combined beneficial effects of physical training and metabolic treatment on atherosclerosis in hypercholesterolemic mice.
        Proc Natl Acad Sci USA. 2004; 101: 8797-8802
        • Sheetz M.J.
        • King G.L.
        Molecular understanding of hyperglycemia's adverse effects for diabetic complications.
        JAMA. 2002; 288: 2579-2588
        • Spinetti G.
        • Kraenkel N.
        • Emanueli C.
        • et al.
        Diabetes and vessel wall remodelling: from mechanistic insights to regenerative therapies.
        Cardiovasc Res. 2008; 78: 265-273
        • Fadini G.P.
        • Miorin M.
        • Facco M.
        • et al.
        Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus.
        J Am Coll Cardiol. 2005; 45: 1449-1457
        • Loomans C.J.
        • de Koning E.J.
        • Staal F.J.
        • et al.
        Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes.
        Diabetes. 2004; 53: 195-199
        • Sorrentino S.A.
        • Bahlmann F.H.
        • Besler C.
        • et al.
        Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone.
        Circulation. 2007; 116: 163-173
        • Guarante L.
        Sirtuins as potential targets for metabolic syndrome.
        Nature. 2006; 444: 868-874
        • Ota H.
        • Akishita M.
        • Eto M.
        • et al.
        Sirt1 modulates premature senescence-like phenotype in human endothelial cells.
        J Mol Cell Cardiol. 2007; 43: 571-579
        • Mattagajasingh I.
        • Kim C.S.
        • Naqvi A.
        • et al.
        SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase.
        Proc Natl Acad Sci USA. 2007; 104: 14855-14860
        • Potente M.
        • Ghaeni L.
        • Baldessari D.
        • et al.
        SIRT1 controls endothelial angiogenic functions during vascular growth.
        Genes Dev. 2007; 21: 2644-2658
        • Balestrieri M.L.
        • Rienzo M.
        • Felice F.
        • et al.
        High glucose downregulates endothelial progenitor cell number via SIRT1.
        Biochim Biophys Acta. 2008; 1784: 936-945
        • de Nigris F.
        • Williams-Ignarro S.
        • Sica V.
        • et al.
        Therapeutical effects of concurrent autologous bone marrow cell infusion and metabolic intervention in ischemia-induced angiogenesis in the hypercholesterolemic mouse hindlimb.
        Int J Cardiol. 2007; 117: 238-243
        • Sica V.
        • Williams-Ignarro S.
        • de Nigris F.
        • et al.
        Autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the diabetic mouse hindlimb.
        Cell Cycle. 2006; 5: 2903-2908
        • Baker A.H.
        • Sica V.
        • Work L.M.
        • et al.
        Brain protection using autologous bone marrow cell, metalloproteinase inhibitors and metabolic treatment in cerebral ischemia.
        Proc Natl Acad Sci USA. 2007; 104: 3597-3602
        • de Nigris F.
        • Balestrieri M.L.
        • Williams-Ignarro S.
        • et al.
        Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways.
        J Cardiovasc Pharmacol. 2007; 50: 424-433
        • Wang M.C.
        • Bohmann D.
        • Jasper H.
        JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling.
        Cell. 2005; 121: 115-125
        • Fiorito C.
        • Balestrieri M.L.
        • Crimi E.
        • et al.
        Effect of l-arginine on circulating endothelial progenitor cells after moderate physical training in mice.
        Int J Cardiol. 2008; 126: 421-423
        • Klimanskaya I.
        • Chung Y.
        • Becker S.
        • Lu S.-J.
        • Lanza R.
        Human embryonic stem-cell lines derived from single blastomeres.
        Nature. 2006; 444: 481-485
        • Salvatore P.
        • Casamassimi A.
        • Sommmese L.
        • et al.
        Detrimental effects of Bartonella henselae are counteracted by l-arginine and nitric oxide in human endothelial progenitor cells.
        Proc Natl Acad Sci USA. 2008; 105: 9427-9432
        • Emanueli C.
        • Graiani G.
        • Salis M.B.
        • Gadau S.
        • Desortes E.
        • Madeddu P.
        Prophylactic gene therapy with human tissue kallikrein ameliorates limb ischemia recovery in type 1 diabetic mice.
        Diabetes. 2004; 53: 1096-1103
        • Seeger F.H.
        • Haendeler J.
        • Walter D.H.
        • et al.
        p38 mitogen-activated protein kinase downregulates endothelial progenitor cells.
        Circulation. 2005; 111: 1184-1191
        • de Nigris F.
        • Lerman L.O.
        • Napoli C.
        New insights in the transcriptional activity and coregulator molecules in the arterial wall.
        Int J Cardiol. 2002; 86: 153-168
        • Arras M.
        • Ito W.D.
        • Scholz D.
        • et al.
        Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb.
        J Clin Invest. 1997; 101: 40-50
        • Bosch-Marce M.
        • Pola R.
        • Wecker A.B.
        • et al.
        Hyperhomocyst(e)inemia impairs angiogenesis in a murine model of limb ischemia.
        Vasc Med. 2005; 10: 15-22
        • Callaghan M.J.
        • Ceradini D.J.
        • Gurtner G.C.
        Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function.
        Antioxid Redox Signal. 2005; 7: 1476-1482
        • Tamarat R.
        • Silvestre J.S.
        • Huijberts M.
        • et al.
        Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice.
        Proc Natl Acad Sci USA. 2003; 100: 8555-8560
        • Napoli C.
        • Ignarro L.J.
        Nitric oxide-releasing drugs.
        Annu Rev Pharmacol Toxicol. 2003; 43: 97-123
        • Balestrieri M.L.
        • Napoli C.
        Novel challenges in exploring peptide ligands and corresponding tissue-specific endothelial receptors.
        Eur J Cancer. 2007; 43: 1242-1250