Advertisement
Review| Volume 212, ISSUE 1, P16-29, September 2010

Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm

      Abstract

      Abdominal aortic aneurysm (AAA) is a common disease associated with significant cardiovascular morbidity and mortality. The pathogenesis of AAA is poorly defined, making targeting of new therapies problematic. Current evidence favours an interaction of multiple environmental and genetic factors in the initiation and progression of AAA. Epigenetics is the term used to define the properties of the genome that are not explained by the primary sequence, but are due to the modifications of DNA and/or associated proteins. Previous research indicates the association of gene specific promoter DNA hyper-methylation and global DNA hypo-methylation with atherosclerosis. Evidence also suggests an important role for epigenetic processes such as histone acetylation in cardiovascular diseases including atherosclerosis and restenosis. Altered DNA methylation or histone acetylation occur in inflammation, cellular proliferation and remodelling processes and therefore maybe relevant to the pathology of AAA. Important risk factors for AAA, including cigarette smoking, older age, male gender and hypertension, have been linked with epigenetic effects and thus could act in this way to promote AAA. In this review, we discuss the potential role of epigenetic mechanisms in AAA. Since epigenetic alterations are to some extent reversible, further study of this area may identify new treatment targets for AAA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldberg A.D.
        • Allis C.D.
        • Bernstein E.
        Epigenetics: a landscape takes shape.
        Cell. 2007; 128: 635-638
        • Desaulniers D.
        • Xiao G.H.
        • Lian H.
        • et al.
        Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague–Dawley rats.
        Int J Toxicol. 2009; 28: 294-307
        • Zaina S.
        • Lindholm M.W.
        • Lund G.
        Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia?.
        J Nutr. 2005; 135: 5-8
        • Laukkanen M.O.
        • Mannermaa S.
        • Hiltunen M.O.
        • et al.
        Local hypomethylation in atherosclerosis found in rabbit ec-sod gene.
        Arterioscler Thromb Vasc Biol. 1999; 19: 2171-2178
        • Turunen M.P.
        • Aavik E.
        • Ylä-Herttuala S.
        Epigenetics and atherosclerosis.
        Biochim Biophys Acta. 2009; 1790: 886-891
        • Pons D.
        • Jukema J.W.
        Epigenetic histone acetylation modifiers in vascular remodelling—new targets for therapy in cardiovascular disease.
        Neth Heart J. 2008; 16: 30-32
        • Gratama J.W.
        • van Leeuwen R.B.
        Abdominal aortic aneurysm: high prevalence in men over 59 years of age with TIA or stroke, a perspective.
        Abdom Imaging. 2010; 35: 95-98
      1. Chichester Aneurysm Screening Group; Viborg Aneurysm Screening Study; Western Australian Abdominal Aortic Aneurysm Program; Multicentre Aneurysm Screening Study. A comparative study of the prevalence of abdominal aortic aneurysms in the United Kingdom, Denmark, and Australia. J Med Screen. 2001; 8(1):46-50.

        • Scott R.A.
        • Bridgewater S.G.
        • Ashton H.A.
        Randomized clinical trial of screening for abdominal aortic aneurysm in women.
        Br J Surg. 2002; 89: 283-285
        • The UK Small Aneurysm Trial Participants
        Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms.
        Lancet. 1998; 352: 1649-1655
        • Lederle F.A.
        • Wilson S.E.
        • Johnson G.R.
        • et al.
        Immediate repair compared with surveillance of small abdominal aortic aneurysms.
        N Engl J Med. 2002; 346: 1437-1444
        • Cao P.
        Comparison of surveillance vs Aortic Endografting for Small Aneurysm Repair (CAESAR) trial: study design and progress.
        Eur J Vasc Endovasc Surg. 2005; 30: 245-251
        • Ouriel K.
        Randomized clinical trials of endovascular repair versus surveillance for treatment of small abdominal aortic aneurysms.
        J Endovasc Ther. 2009; 16: I94-105
        • Annambhotla S.
        • Bourgeois S.
        • Wang X.
        • et al.
        Recent advances in molecular mechanisms of abdominal aortic aneurysm formation.
        World J Surg. 2008; 32: 976-986
        • Wassef M.
        • Upchurch Jr., G.R.
        • Kuivaniemi H.
        • Thompson R.W.
        • Tilson 3rd., M.D.
        Challenges and opportunities in abdominal aortic aneurysm research.
        J Vasc Surg. 2007; 45: 192-198
        • Miyake T.
        • Morishita R.
        Pharmacological treatment of abdominal aortic aneurysm.
        Cardiovasc Res. 2009; 83: 436-443
        • Henderson E.L.
        • Geng Y.J.
        • Sukhova G.K.
        • et al.
        Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms.
        Circulation. 1999; 99: 96-104
        • Longo G.M.
        • Xiong W.
        • Greiner T.C.
        • et al.
        Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms.
        J Clin Invest. 2002; 110: 625-632
        • van Vlijmen-van Keulen C.J.P.G.
        • Rauwerda J.A.
        Familial abdominal aortic aneurysm: a systematic review of a genetic background.
        Eur J Vasc Endovasc Surg. 2002; 24: 105-116
        • The Aneurysm Consortium
        Genome wide association studies: identifying the genes that determine the risk of abdominal aortic aneurysm.
        Eur J Vasc Endovasc Surg. 2008; 36: 395-396
        • Larsson E.
        • Granath F.
        • Swedenborg J.
        • Hultgren R.
        A population-based case-control study of the familial risk of abdominal aortic aneurysm.
        J Vasc Surg. 2009; 49 (discussion 1): 47-50
        • Majumder P.P.
        • St Jean P.L.
        • Ferrell R.E.
        • Webster M.W.
        • Steed D.L.
        On the inheritance of abdominal aortic aneurysm.
        Am J Hum Genet. 1991; 48: 164-170
        • Worrall B.B.
        • Foroud T.
        • Brown Jr., R.D.
        • et al.
        Genome screen to detect linkage to common susceptibility genes for intracranial and aortic aneurysms.
        Stroke. 2009; 40: 71-76
        • Shibamura H.
        • Olson J.M.
        • van Vlijmen-Van Keulen C.
        • et al.
        Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifies linkage to chromosome 19q13.
        Circulation. 2004 May 4; 109: 2103-2108
        • Van Vlijmen-Van Keulen C.J.
        • Rauwerda J.A.
        • Pals G.
        Genome-wide linkage in three Dutch families maps a locus for abdominal aortic aneurysms to chromosome 19q13.3.
        Eur J Vasc Endovasc Surg. 2005; 30: 29-35
        • Kuivaniemi H.
        • Kyo Y.
        • Lenk G.
        • Tromp G.
        Genome-wide approach to finding abdominal aortic aneurysm susceptibility genes in humans.
        Ann N Y Acad Sci. 2006; November (1085): 270-281
        • Hoh J.
        • Wille A.
        • Ott J.
        Trimming, weighting, and grouping SNPs in human case-control association studies.
        Genome Res. 2001; 11: 2115-2119
        • Baas A.F.
        • Medic J.
        • van’t Slot R.
        • de Kovel C.G.
        • Zhernakova A.
        • Geelkerken R.H.
        • Kranendonk S.E.
        • van Sterkenburg S.M.
        • Grobbee D.E.
        • Boll A.P.
        • Wijmenga C.
        • Blankensteijn J.D.
        • Ruigrok Y.M.
        Association of the TGF-beta receptor genes with abdominal aortic aneurysm.
        Eur J Hum Genet. 2010; 18: 240-244
        • Massart F.
        • Marini F.
        • Menegato A.
        • et al.
        Allelic genes involved in artery compliance and susceptibility to sporadic abdominal aortic aneurysm.
        J Steroid Biochem Mol Biol. 2004; 92: 413-418
        • Fatini C.
        • Pratesi G.
        • Sofi F.
        • et al.
        ACE DD genotype: a predisposing factor for abdominal aortic aneurysm.
        Eur J Vasc Endovasc Surg. 2005; 29: 227-232
        • Lucarini L.
        • Sticchi E.
        • Sofi F.
        • et al.
        ACE and TGFBR1 genes interact in influencing the susceptibility to abdominal aortic aneurysm.
        Atherosclerosis. 2009; 202: 205-210
        • Korcz A.
        • Mikolajczyk-Stecyna J.
        • Gabriel M.
        • et al.
        Angiotensin-converting enzyme (ACE, I/D) gene polymorphism and susceptibility to abdominal aortic aneurysm or aortoiliac occlusive disease.
        J Surg Res. 2009; 153: 76-82
        • Jones G.T.
        • Harris E.L.
        • Phillips L.V.
        • van Rij A.M.
        The methylenetetrahydrofolate reductase C677T polymorphism does not associate with susceptibility to abdominal aortic aneurysm.
        Eur J Vasc Endovasc Surg. 2005; 30: 137-142
        • Jones G.T.
        • Thompson A.R.
        • van Bockxmeer F.M.
        • et al.
        Angiotensin II type 1 receptor 1166C polymorphism is associated with abdominal aortic aneurysm in three independent cohorts.
        Arterioscler Thromb Vasc Biol. 2008; 28: 764-770
        • Deguara J.
        • Burnand K.G.
        • Berg J.
        • et al.
        An increased frequency of the 5A allele in the promoter region of the MMP3 gene is associated with abdominal aortic aneurysms.
        Hum Mol Genet. 2007 Dec 15; 16: 3002-3007
        • Jones G.T.
        • Phillips V.L.
        • Harris E.L.
        • Rossaak J.I.
        • van Rij A.M.
        Functional matrix metalloproteinase-9 polymorphism (C-1562T) associated with abdominal aortic aneurysm.
        J Vasc Surg. 2003 Dec; 38: 1363-1367
        • Ogata T.
        • Shibamura H.
        • Tromp G.
        • et al.
        Genetic analysis of polymorphisms in biologically relevant candidate genes in patients with abdominal aortic aneurysms.
        J Vasc Surg. 2005; 41: 1036-1042
        • Hinterseher I.
        • Krex D.
        • Kuhlisch E.
        • et al.
        Analysis of tissue inhibitor of metalloproteinase-2 gene polymorphisms in a caucasian population with abdominal aortic aneurysms.
        Zentralbl Chir. 2008; 133: 332-337
        • Rossaak J.I.
        • Van Rij A.M.
        • Jones G.T.
        • Harris E.L.
        Association of the 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor-1 with abdominal aortic aneurysms.
        J Vasc Surg. 2000; 31: 1026-1032
        • Bown M.J.
        • Lloyd G.M.
        • Sandford R.M.
        • et al.
        The interleukin-10-1082 ‘A’ allele and abdominal aortic aneurysms.
        J Vasc Surg. 2007; 46: 687-693
        • Ghilardi G.
        • Biondi M.L.
        • Battaglioli L.
        • et al.
        Genetic risk factor characterizes abdominal aortic aneurysm from arterial occlusive disease in human beings: CCR5 Delta 32 deletion.
        J Vasc Surg. 2004; 40: 995-1000
        • Rasmussen T.E.
        • Hallett Jr., J.W.
        • Tazelaar H.D.
        • et al.
        Human leukocyte antigen class II immune response genes, female gender, and cigarette smoking as risk and modulating factors in abdominal aortic aneurysms.
        J Vasc Surg. 2002; 35: 988-993
        • Fatini C.
        • Sofi F.
        • Sticchi E.
        • et al.
        eNOS G894T polymorphism as a mild predisposing factor for abdominal aortic aneurysm.
        J Vasc Surg. 2005; 42: 415-419
        • Strauss E.
        • Waliszewski K.
        • Gabriel M.
        • Zapalski S.
        • Pawlak A.L.
        Increased risk of the abdominal aortic aneurysm in carriers of the MTHFR 677T allele.
        J Appl Genet. 2003; 44: 85-93
        • Schillinger M.
        • Exner M.
        • Mlekusch W.
        • et al.
        Heme oxygenase-1 gene promoter polymorphism is associated with abdominal aortic aneurysm.
        Thromb Res. 2002; 106: 131-136
        • Giusti B.
        • Saracini C.
        • Bolli P.
        • et al.
        Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm.
        J Med Genet. 2008; 45: 721-730
        • Pannu H.
        • Avidan N.
        • Tran-Fadulu V.
        • Milewicz D.M.
        Genetic basis of thoracic aortic aneurysms and dissections: potential relevance to abdominal aortic aneurysms.
        Ann N Y Acad Sci. 2006; November (1085): 242-255
        • Milewicz D.M.
        • Guo D.C.
        • Tran-Fadulu V.
        • et al.
        Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction.
        Annu Rev Genomics Hum Genet. 2008; 9: 283-302
        • Golledge J.
        • Clancy P.
        • Jones G.T.
        • et al.
        Possible association between genetic polymorphisms in transforming growth factor beta receptors, serum transforming growth factor beta1 concentration and abdominal aortic aneurysm.
        Br J Surg. 2009; 96: 628-632
        • Helgadottir A.
        • Thorleifsson G.
        • Magnusson K.P.
        • et al.
        The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm.
        Nat Genet. 2008; 40: 217-224
        • Thompson A.R.
        • Golledge J.
        • Cooper J.A.
        • et al.
        Sequence variant on 9p21 is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion.
        Eur J Hum Genet. 2009; 17: 391-394
        • Elmore J.R.
        • Obmann M.A.
        • Kuivaniemi H.
        • et al.
        Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association.
        J Vasc Surg. 2009; 49: 1525-1531
        • Luger K.
        • Mader A.W.
        • Richmond R.K.
        • Sargent D.F.
        • Richmond T.J.
        Crystal structures of the nucleosome core particle at 2.8 A resolution.
        Nature. 1997; 389: 251-260
        • Egger G.
        • Liang G.
        • Aparicio A.
        • Jones P.A.
        Epigenetics in human disease and prospects for epigenetic therapy.
        Nature. 2004; 429: 457-463
        • Jenuwein T.
        • Allis C.D.
        Translating the histone code.
        Science. 2001; 293: 1074-1080
        • Bannister A.J.
        • Kouzarides T.
        Reversing histone methylation.
        Nature. 2005; 436: 1103-1106
        • McKinsey T.A.
        • Zhang C.L.
        • Olson E.N.
        Control of muscle development by dueling HATs and HDACs.
        Curr Opin Genet Dev. 2001; 11: 497-504
        • Narlikar G.J.
        • Fan H.Y.
        • Kingston R.E.
        Cooperation between complexes that regulate chromatin structure and transcription.
        Cell. 2002; 108: 475-487
        • Ha C.H.
        • Wang W.
        • Jhun B.S.
        • et al.
        Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis.
        J Biol Chem. 2008; 283: 14590-14599
        • Wang S.
        • Li X.
        • Parra M.
        • et al.
        Control of endothelial cell proliferation and migration by VEGF signalling to histone deacetylase 7.
        Proc Natl Acad Sci USA. 2008; 105: 7738-7743
        • Rosenfeld M.G.
        • Lunyak V.V.
        • Glass C.K.
        Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response.
        Genes Dev. 2006; 20: 1405-1428
        • Tazi J.
        • Bird A.
        Alternative chromatin structure at CpG islands.
        Cell. 1990; 60: 909-920
        • Matouk C.C.
        • Marsden P.A.
        Epigenetic regulation of vascular endothelial gene expression.
        Circ Res. 2008; 102: 873-887
        • Dong C.
        • Yoon W.
        • Goldschmidt-Clermont P.J.
        DNA methylation and atherosclerosis.
        J Nutr. 2002; 132: 2406S-2409S
        • Hiltunen M.O.
        • Yla-Herttuala S.
        DNA methylation, smooth muscle cells, and atherogenesis.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1750-1753
        • Pascale R.M.
        • Simile M.M.
        • De Miglio M.R.
        • Feo F.
        Chemoprevention of hepatocarcinogenesis: S-adenosyl-l-methionine.
        Alcohol. 2002; 27: 193-198
        • Ikegami K.
        • Ohgane J.
        • Tanaka S.
        • Yagi S.
        • Shiota K.
        Interplay between DNA methylation, histone modification and chromatin remodelling in stem cells and during development.
        Int J Dev Biol. 2009; 53: 203-214
        • Fuks F.
        • Hurd P.J.
        • Wolf D.
        • et al.
        The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation.
        J Biol Chem. 2003; 278: 4035-4040
        • Reed D.
        • Reed C.
        • Stemmermann G.
        • Hayashi T.
        Are aortic aneurysms caused by atherosclerosis?.
        Circulation. 1992; 85: 205-211
        • Shah P.K.
        Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm.
        Circulation. 1997; 96: 2115-2117
        • Post W.S.
        • Goldschmidt-Clermont P.J.
        • Wilhide C.C.
        • et al.
        Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system.
        Cardiovasc Res. 1999; 43: 985-991
        • Ying A.K.
        • Hassanain H.H.
        • Roos C.M.
        • et al.
        Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells.
        Cardiovasc Res. 2000; 46: 172-179
        • Choi J.H.
        • Nam K.H.
        • Kim J.
        • et al.
        Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice.
        Arterioscler Thromb Vasc Biol. 2005; 25: 2404-2409
        • Kong X.
        • Fang M.
        • Li P.
        • Fang F.
        • Xu Y.
        HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells.
        J Mol Cell Cardiol. 2009; 46: 292-299
        • Arapoglou V.
        • Kondi-Pafiti A.
        • Rizos D.
        • et al.
        The influence of total plasma homocysteine and traditional atherosclerotic risk factors on degree of abdominal aortic aneurysm tissue inflammation.
        Vasc Endovascular Surg. 2009; 43: 473-479
        • Sato N.
        • Maehara N.
        • Su G.H.
        • Goggins M.
        Effects of 5-aza-2′-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness.
        J Natl Cancer Inst. 2003; 95: 327-330
        • Jayaraman G.
        • Srinivas R.
        • Duggan C.
        • et al.
        p300/cAMP-responsive element-binding protein interactions with ets-1 and ets-2 in the transcriptional activation of the human stromelysin promoter.
        J Biol Chem. 1999; 274: 17342-17352
        • Wild A.
        • Ramaswamy A.
        • Langer P.
        • et al.
        Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors.
        J Clin Endocrinol Metab. 2003; 88: 1367-1373
        • Chan G.C.
        • Fish J.E.
        • Mawji I.A.
        • et al.
        Epigenetic basis for the transcriptional hypo responsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells.
        J Immunol. 2005; 175: 3846-3861
        • Chan Y.
        • Fish J.E.
        • D’Abreo C.
        • et al.
        The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation.
        J Biol Chem. 2004; 279: 35087-35100
        • White G.P.
        • Watt P.M.
        • Holt B.J.
        • Holt P.G.
        Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO-T cells.
        J Immunol. 2002; 168: 2820-2827
        • Takei S.
        • Fernandez D.
        • Redford A.
        • Toyoda H.
        Methylation status of 5′-regulatory region of tumour necrosis factor alpha gene correlates with differentiation stages of monocytes.
        Biochem Biophys Res Commun. 1996; 220: 606-612
        • Hellebrekers D.M.
        • Castermans K.
        • Vire E.
        • et al.
        Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications.
        Cancer Res. 2006; 66: 10770-10777
        • Armenante F.
        • Merola M.
        • Furia A.
        • Palmieri M.
        Repression of the IL-6 gene is associated with hypermethylation.
        Biochem Biophys Res Commun. 1999; 258: 644-647
        • Dandrea M.
        • Donadelli M.
        • Costanzo C.
        • Scarpa A.
        • Palmieri M.
        MeCP2/H3meK9 are involved in IL-6 gene silencing in pancreatic adenocarcinoma cell lines.
        Nucleic Acids Res. 2009;
        • Osada H.
        • Tatematsu Y.
        • Sugito N.
        • Horio Y.
        • Takahashi T.
        Histone modification in the TGF-beta-RII gene promoter and its significance for responsiveness to HDAC inhibitor in lung cancer cell lines.
        Mol Carcinog. 2005; 44: 233-241
        • Lin X.H.
        • Guo C.
        • Gu L.J.
        • Deuel T.F.
        Site-specific methylation inhibits transcriptional activity of platelet-derived growth factor A-chain promoter.
        J Biol Chem. 1993; 268: 17334-17340
        • Kim J.
        • Kim J.Y.
        • Song K.S.
        • et al.
        Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence.
        Biochim Biophys Acta. 2007; 1772: 72-80
        • Hastings N.E.
        • Simmers M.B.
        • McDonald O.G.
        • Wamhoff B.R.
        • Blackman B.R.
        Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming.
        Am J Physiol Cell Physiol. 2007; 293: C1824-C1833
        • Liu C.
        • Xu D.
        • Sjoberg J.
        • et al.
        Transcriptional regulation of 15-lipoxygenase expression by promoter methylation.
        Exp Cell Res. 2004; 297: 61-67
        • Devlin A.M.
        • Singh R.
        • Wade R.E.
        • et al.
        Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyper-homocysteinemia.
        J Biol Chem. 2007; 282: 37082-37090
        • Chen Z.
        • Karaplis A.C.
        • Ackerman S.L.
        • et al.
        Mice deficient in methylenetetrahydrofolate reductase exhibit hyper-homocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition.
        Hum Mol Genet. 2001; 10: 433-443
        • Schroeder M.
        • Mass M.J.
        CpG methylation inactivates the transcriptional activity of the promoter of the human p53 tumour suppressor gene.
        Biochem Biophys Res Commun. 1997; 235: 403-406
        • Golledge J.
        • Muller J.
        • Daugherty A.
        • Norman P.
        Abdominal aortic aneurysm: pathogenesis and implications for management.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2605-2613
        • Sakalihasan N.
        • Limet R.
        • Defawe O.D.
        Abdominal aortic aneurysm.
        Lancet. 2005; 365: 1577-1589
        • Forsdahl S.H.
        • Singh K.
        • Solberg S.
        • Jacobsen B.K.
        Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the Tromso Study, 1994–2001.
        Circulation. 2009; 119: 2202-2208
        • Brady A.R.
        • Thompson S.G.
        • Fowkes F.G.
        • Greenhalgh R.M.
        • Powell J.T.
        Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance.
        Circulation. 2004; 110: 16-21
        • Bergoeing M.P.
        • Arif B.
        • Hackmann A.E.
        • et al.
        Cigarette smoking increases aortic dilatation without affecting matrix metalloproteinase-9 and -12 expression in a modified mouse model of aneurysm formation.
        J Vasc Surg. 2007; 45: 1217-1227
        • Takagi H.
        • Umemoto T.
        Smoking promotes pathogenesis of aortic aneurysm through the 5-lipoxygenase pathway.
        Med Hypotheses. 2005; 64: 1117-1119
        • Zhu J.
        • Kilty I.
        • Granger H.
        • et al.
        Gene expression and immunolocalization of 15-lipoxygenase isozymes in the airway mucosa of smokers with chronic bronchitis.
        Am J Respir Cell Mol Biol. 2002; 27: 666-677
        • Bengtsson H.
        • Bergqvist D.
        • Sternby N.H.
        Increasing prevalence of abdominal aortic aneurysms. A necropsy study.
        Eur J Surg. 1992; 158: 19-23
        • Issa J.P.
        Aging DNA methylation and cancer.
        Crit Rev Oncol Hematol. 1999; 32: 31-43
        • Issa J.P.
        • Ottaviano Y.L.
        • Celano P.
        • et al.
        Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon.
        Nat Genet. 1994; 7: 536-540
        • Wilson V.L.
        • Jones P.A.
        DNA methylation decreases in aging but not in immortal cells.
        Science. 1983; 220: 1055-1057
        • Baylin S.B.
        • Herman J.G.
        • Graff J.R.
        • Vertino P.M.
        • Issa J.P.
        Alterations in DNA methylation: a fundamental aspect of neoplasia.
        Adv Cancer Res. 1998; 72: 141-196
        • Hiltunen M.O.
        • Turunen M.P.
        • Hakkinen T.P.
        • et al.
        DNA hypomethylation and methyltransferase expression in atherosclerotic lesions.
        Vasc Med. 2002; 7: 5-11
        • Calvanese V.
        • Lara E.
        • Kahn A.
        • Fraga M.F.
        The role of epigenetics in aging and age-related diseases.
        Ageing Res Rev. 2009; 8: 268-276
        • Shimizu K.
        • Mitchell R.N.
        • Libby P.
        Inflammation and cellular immune responses in abdominal aortic aneurysms.
        Arterioscler Thromb Vasc Biol. 2006; 26: 987-994
        • McCormick M.L.
        • Gavrila D.
        • Weintraub N.L.
        Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms.
        Arterioscler Thromb Vasc Biol. 2007; 27: 461-469
        • Moodie F.M.
        • Marwick J.A.
        • Anderson C.S.
        • et al.
        Oxidative stress and cigarette smoke alter chromatin remodelling but differentially regulate NF-kappaB activation and pro-inflammatory cytokine release in alveolar epithelial cells.
        FASEB J. 2004; 18: 1897-1899
        • Pons D.
        • de Vries F.R.
        • van den Elsen P.J.
        • et al.
        Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease.
        Eur Heart J. 2009; 30: 266-277
        • Corwin E.J.
        The concept of epigenetics and its role in the development of cardiovascular disease: commentary on “new and emerging theories of cardiovascular disease.
        Biol Res Nurs. 2004; 6 (discussion 21–3): 11-16
        • Jang T.J.
        • Kim D.I.
        • Shin Y.M.
        • Chang H.K.
        • Yang C.H.
        p16(INK4a) Promoter hyper-methylation of non-tumorous tissue adjacent to gastric cancer is correlated with glandular atrophy and chronic inflammation.
        Int J Cancer. 2001; 93: 629-634
        • Kang G.H.
        • Lee H.J.
        • Hwang K.S.
        • et al.
        Aberrant CpG island hyper-methylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation.
        Am J Pathol. 2003; 163: 1551-1556
        • Teitell M.
        • Richardson B.
        DNA methylation in the immune system.
        Clin Immunol. 2003; 109: 2-5
        • Hodge D.R.
        • Xiao W.
        • Clausen P.A.
        • et al.
        Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells.
        J Biol Chem. 2001; 276: 39508-39511
        • Hodge D.R.
        • Peng B.
        • Cherry J.C.
        • et al.
        Interleukin 6 supports the maintenance of p53 tumour suppressor gene promoter methylation.
        Cancer Res. 2005; 65: 4673-4682
        • Stenvinkel P.
        • Karimi M.
        • Johansson S.
        • et al.
        Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease?.
        J Intern Med. 2007; 261: 488-499
        • Galm O.
        • Yoshikawa H.
        • Esteller M.
        • Osieka R.
        • Herman J.G.
        SOCS-1, a negative regulator of cytokine signalling, is frequently silenced by methylation in multiple myeloma.
        Blood. 2003; 101: 2784-2788
        • Williams K.T.
        • Garrow T.A.
        • Schalinske K.L.
        Type I diabetes leads to tissue-specific DNA hypo-methylation in male rats.
        J Nutr. 2008; 138: 2064-2069
        • Yi P.
        • Melnyk S.
        • Pogribna M.
        • et al.
        Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypo-methylation.
        J Biol Chem. 2000; 275: 29318-29323
        • James S.J.
        • Melnyk S.
        • Pogribna M.
        • Pogribny I.P.
        • Caudill M.A.
        Elevation in S-adenosylhomocysteine and DNA hypo-methylation: potential epigenetic mechanism for homocysteine-related pathology.
        J Nutr. 2002; 132: 2361S-2366S
        • Sharma P.
        • Kumar J.
        • Garg G.
        • et al.
        Detection of altered global DNA methylation in coronary artery disease patients.
        DNA Cell Biol. 2008; 27: 357-365
      2. Ulrey CL, Liu L, Andrews LG, Tollefsbol TO. The impact of metabolism on DNA methylation. Hum Mol Genet 2005;April (14 Spec No. 1):R139–47.

        • Castro R.
        • Rivera I.
        • Struys E.A.
        • et al.
        Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypo-methylation in vascular disease.
        Clin Chem. 2003; 49: 1292-1296
        • Lund G.
        • Andersson L.
        • Lauria M.
        • et al.
        DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E.
        J Biol Chem. 2004 Jul 9; 279: 29147-29154
        • Moat S.J.
        • Lang D.
        • McDowell I.F.
        • et al.
        Folate, homocysteine, endothelial function and cardiovascular disease.
        J Nutr Biochem. 2004; 15: 64-79
        • Moroz P.
        • Le M.T.
        • Norman P.E.
        Homocysteine and abdominal aortic aneurysms.
        ANZ J Surg. 2007; 77: 329-332
        • Sofi F.
        • Marcucci R.
        • Giusti B.
        • et al.
        High levels of homocysteine, lipoprotein (a) and plasminogen activator inhibitor-1 are present in patients with abdominal aortic aneurysm.
        Thromb Haemost. 2005; 94: 1094-1098
        • Brunelli T.
        • Prisco D.
        • Fedi S.
        • et al.
        High prevalence of mild hyper-homocysteinemia in patients with abdominal aortic aneurysm.
        J Vasc Surg. 2000; 32: 531-536
        • Peeters A.C.
        • van Landeghem B.A.
        • Graafsma S.J.
        • et al.
        Low vitamin B6, and not plasma homocysteine concentration, as risk factor for abdominal aortic aneurysm: a retrospective case–control study.
        J Vasc Surg. 2007; 45: 701-705
        • Neves M.F.
        • Endemann D.
        • Amiri F.
        • et al.
        Small artery mechanics in hyper-homocysteinemic mice: effects of angiotensin II.
        J Hypertens. 2004; 22: 959-966
        • Bortolotto L.A.
        • Safar M.E.
        • Billaud E.
        • et al.
        Plasma homocysteine, aortic stiffness, and renal function in hypertensive patients.
        Hypertension. 1999; 34: 837-842
        • Prall A.K.
        • Longo G.M.
        • Mayhan W.G.
        • et al.
        Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice.
        J Vasc Surg. 2002; 35: 923-929
        • Manning M.W.
        • Cassis L.A.
        • Daugherty A.
        Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms.
        Arterioscler Thromb Vasc Biol. 2003; 23: 483-488
        • Nozell S.
        • Ma Z.
        • Wilson C.
        • Shah R.
        • Benveniste E.N.
        Class II major histocompatibility complex transactivator (CIITA) inhibits matrix metalloproteinase-9 gene expression.
        J Biol Chem. 2004; 279: 38577-38589
        • Yan C.
        • Wang H.
        • Toh Y.
        • Boyd D.D.
        Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation.
        J Biol Chem. 2003; 278: 2309-2316
        • Pender S.L.
        • Quinn J.J.
        • Sanderson I.R.
        • MacDonald T.T.
        Butyrate upregulates stromelysin-1 production by intestinal mesenchymal cells.
        Am J Physiol Gastrointest Liver Physiol. 2000; 279: G918-G924
        • Ailenberg M.
        • Silverman M.
        Trichostatin A-histone deacetylase inhibitor with clinical therapeutic potential-is also a selective and potent inhibitor of gelatinase A expression.
        Biochem Biophys Res Commun. 2002; 298: 110-115
        • Chang S.
        • Young B.D.
        • Li S.
        • et al.
        Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10.
        Cell. 2006; 126: 321-334
        • Vinh A.
        • Gaspari T.A.
        • Liu H.B.
        • et al.
        A novel histone deacetylase inhibitor reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice.
        J Vasc Res. 2008; 45: 143-152
        • Santini V.
        • Gozzini A.
        • Ferrari G.
        Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application.
        Curr Drug Metab. 2007; 8: 383-393
        • Van Wagoner D.R.
        • Nattel S.
        Insights into mechanisms linking cardiac hypertrophy and atrial fibrosis: evidence for a role of histone deacetylase in atrial fibrillation pathophysiology and therapy.
        J Mol Cell Cardiol. 2008; 45: 707-708
        • Wang L.
        • de Zoeten E.F.
        • Greene M.I.
        • Hancock W.W.
        Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells.
        Nat Rev Drug Discov. 2009; 8: 969-981
        • Wang J.
        • Mahmud S.A.
        • Bitterman P.B.
        • Huo Y.
        • Slungaard A.
        Histone deacetylase inhibitors suppress TF-kappaB-dependent agonist-driven tissue factor expression in endothelial cells and monocytes.
        J Biol Chem. 2007; 282: 28408-28418
        • Okamoto H.
        • Fujioka Y.
        • Takahashi A.
        • et al.
        Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1).
        J Atheroscler Thromb. 2006; 13: 183-191
        • Lee T.M.
        • Lin M.S.
        • Chang N.C.
        Inhibition of histone deacetylase on ventricular remodelling in infracted rats.
        Am J Physiol Heart Circ Physiol. 2007; 293: H968-H977
        • Liu F.
        • Levin M.D.
        • Petrenko N.B.
        • et al.
        Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin.
        J Mol Cell Cardiol. 2008; 45: 715-723
        • Granger A.
        • Abdullah I.
        • Huebner F.
        • et al.
        Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice.
        FASEB J. 2008; 22: 3549-3560
        • Brueckner B.
        • Garcia Boy R.
        • Siedlecki P.
        • et al.
        Epigenetic reactivation of tumour suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases.
        Cancer Res. 2005; 65: 6305-6311
        • Lin X.
        • Asgari K.
        • Putzi M.J.
        • et al.
        Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide.
        Cancer Res. 2001; 61: 8611-8616
      3. Gomeza D JG, Michela JB, Vranckxa R. J005 Genetic and non-genetic forms of aneurysms of the human ascending aorta share activation and over expression of Smad2: putative implication of epigenetic mechanisms. Arch Cardiovas Dis 2009;102(March (1)):S104.

        • Chuang J.C.
        • Jones P.A.
        Epigenetics and microRNAs.
        Pediatr Res. 2007; 61: 24R-29R
        • Wang S.
        • Olson E.N.
        AngiomiRs—key regulators of angiogenesis.
        Curr Opin Genet Dev. 2009; 19: 205-211
        • Zernecke A.
        • Bidzhekov K.
        • Noels H.
        • et al.
        Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection.
        Sci Signal. 2009; 2: ra81
        • Wang S.
        • Aurora A.B.
        • Johnson B.A.
        • et al.
        The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis.
        Dev Cell. 2008; 15: 261-271