Advertisement

Interactions between age and apoE genotype on fasting and postprandial triglycerides levels

      Abstract

      Objective

      The influences of genetic determinants on the magnitude of postprandial lipaemia are presently unclear. Here the impact of the common apolipoprotein (apo)E epsilon mutation on the postprandial triglyceride (TG) response is determined, along with an assessment of genotype penetrance according to age, body mass index and gender.

      Methods and results

      Healthy adults (n = 251) underwent a postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min, 49 g fat) and lunch (330 min, 29 g fat) until 480 min after the test breakfast. There was a significant impact of apoE genotype on fasting total cholesterol (TC), (P = 0.027), LDL-cholesterol (LDL-C), (P = 0.008), and %LDL3 (P = 0.001), with higher and lower levels in the E4 and E2 carriers respectively relative to the E3/E3 genotype. Reflective of a higher fasting TG (P = 0.001), a significantly higher area under the curve for the postprandial TG response (TG AUC) was evident in the E4 carriers relative to the E3/E3 group (P = 0.038). In the group as a whole, a significant age × genotype interaction was observed for fasting TC (P = 0.021). In the participants >50 years there was a significant impact of genotype on TC (P = 0.005), LDL-C (P = 0.001) and TAG AUC (P = 0.028).

      Conclusions

      It is possible that an exaggerated postprandial lipaemia contributes to the increased coronary heart disease risk associated with carriers of the E4 allele; an effect which is more evident in older adults.

      Abbreviations:

      Apo (apolipoprotein), AUC (area under the curve), BMI (body mass index), CHD (coronary heart disease), HDL-C (high density lipoprotein cholesterol), HL (hepatic lipase), IAUC (incremental area under the curve), LDL-C (low density lipoprotein cholesterol), SNP (single nucleotide polymorphism), TG (triglyceride), TRL (triglyceride-rich lipoproteins)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bouchier I.A.D.
        • Bronte-Stewart B.
        Alimentary lipemia and ischaemic heart disease.
        Lancet. 1961; 277: 363-366
        • Groot P.H.E.
        • Vanstiphout W.
        • Krauss X.H.
        • et al.
        Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease.
        Arterioscler Thromb. 1991; 11: 653-662
        • Patsch J.R.
        • Miesenbock G.
        • Hopferwieser T.
        • et al.
        Relation of triglyceride metabolism and coronary artery disease-studies in the postprandial state.
        Arterioscler Thromb. 1992; 12: 1336-1345
        • Nordestgaard B.G.
        • Benn M.
        • Schnohr P.
        • Tybjaerg-Hansen A.
        Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women.
        JAMA. 2007; 298: 299-308
        • Bansal S.
        • Buring J.E.
        • Rifai N.
        • Mora S.
        • Sacks F.M.
        • Ridker P.M.
        Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women.
        JAMA. 2007; 298: 309-316
        • Cullen P.
        Evidence that triglycerides are an independent coronary heart disease risk factor.
        Am J Cardiol. 2000; 86: 943-949
        • Austin M.A.
        Triacylglycerol and coronary heart disease.
        Proc Nutr Soc. 1997; 56: 667-670
        • Roche H.M.
        • Gibney M.J.
        Effect of long-chain n-3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism1.
        Am J Clin Nutr. 2000; 71: 232-237
        • Lopez-Miranda J.
        • Williams C.
        • Lairon D.
        Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism.
        Br J Nutr. 2007; 98: 458-473
        • Perez-Martinez P.
        • Lopez-Miranda J.
        • Perez-Jimenez F.
        • Ordovas J.M.
        Influence of genetic factors in the modulation of postprandial lipemia.
        Atheroscler Suppl. 2008; 9: 49-55
        • Mahley R.W.
        Apolipoprotein E-cholesterol transport protein with expanding role in cell biology.
        Science. 1988; 240: 622-630
        • Weisgraber K.H.
        Apolipoprotein E: structure–function relationships. Advances in protein chemistry, vol. 45.
        Academic Press Inc., San Diego1994 (p. 249–302)
        • Tetali S.D.
        • Budamagunta M.S.
        • Voss J.C.
        • Rutledge J.C.
        C-terminal interactions of apolipoprotein E4 respond to the postprandial state.
        J Lipid Res. 2006; 47: 1358-1365
        • Miettinen T.A.
        • Gylling H.
        • Vanhanen H.
        • Ollus A.
        Cholesterol absorption, elimination, and synthesis related to LDL kinetics during varying fat intake in men with different apoprotein E phenotypes.
        Arterioscler Thromb. 1992; 12: 1044-1052
        • Minihane A.M.
        • Jofre-Monseny L.
        • Olano-Martin E.
        • Rimbach G.
        ApoE genotype, cardiovascular risk and responsiveness to dietary fat manipulation.
        Proc Nutr Soc. 2007; 66: 183-197
        • Huang Y.D.
        • Ji Z.S.
        • Brecht W.J.
        • Rall S.C.
        • Taylor J.M.
        • Mahley R.W.
        Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis.
        Arterioscler Thromb Vasc Biol. 1999; 19: 2952-2959
        • Boerwinkle E.
        • Brown S.
        • Sharrett A.R.
        • Heiss G.
        • Patsch W.
        Apolipoprotein E polymorphism influences postprandial retinyl palmitate but not triglyceride concentrations.
        Am J Hum Genet. 1994; 54: 341-360
        • Weintraub M.S.
        • Eisenberg S.
        • Breslow J.L.
        Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E.
        J Clinical Invest. 1987; 80: 1571-1577
        • Rimbach G.
        • Minihane A.M.
        Nutrigenetics and personalised nutrition: how far have we progressed and are we likely to get there?.
        Proc Nutr Soc. 2009; 68: 162-172
        • Olano-Martin E.
        • Abraham E.C.
        • Gill-Garrison R.
        • et al.
        Influence of apoA-V gene variants on postprandial triglyceride metabolism: impact of gender.
        J Lipid Res. 2008; 49: 945-953
        • McNamara J.R.
        • Huang C.
        • Massov T.
        • et al.
        Modification of the dextran–Mg2+ high density lipoprotein cholesterol precipitation method for use with previously frozen plasma.
        Clin Chem. 1994; 40: 233-239
        • Griffin B.A.
        • Caslake M.J.
        • Yip B.
        • Tait G.W.
        • Packard C.J.
        • Shepherd J.
        Rapid isolation of low-density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation.
        Atherosclerosis. 1990; 83: 59-67
        • Friedewald W.T.
        • Levy R.J.
        • Fredrickson D.S.
        Estimation of concentration of low density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge.
        Clinical Chem. 1972; 18: 499-502
        • Frayn K.N.
        Metabolic regulation: a human perspective.
        2nd ed. Portland Press, Oxford2003
        • Frayn K.N.
        • Summers L.K.M.
        • Fielding B.A.
        Regulation of the plasma non-esterified fatty acid concentration in the postprandial state.
        Proc Nutr Soc. 1997; 56: 713-721
        • Bennet A.M.
        • Di Angelantonio E.
        • Ye Z.
        • et al.
        Association of apolipoprotein E genotypes with lipid levels and coronary risk.
        JAMA. 2007; 298: 1300-1311
        • Caslake M.J.
        • Miles E.A.
        • Kofler B.M.
        • et al.
        Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study.
        Am J Clin Nutr. 2008; 88: 618-629
        • Skoglund-Andersson C.
        • Ehrenborg E.
        • Fisher R.M.
        • Olivercrona G.
        • Hamsten A.
        • Karpe F.
        Influence of common variants in the CETP, LPL, HL and APO E genes on LDL heterogeneity in healthy, middle-aged men.
        Atherosclerosis. 2003; 167: 311-317
      1. Lipoprotein atherogenicity: an overview of current mechanisms.
        in: Griffin B.A. Meeting of the Nutrition-Society, Guildford, England, June 29–July 21999
        • Mahley R.W.
        • Huang Y.D.
        • Rall S.C.
        Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia): questions, quandaries, and paradoxes.
        J Lipid Res. 1999; 40: 1933-1949
        • Minihane A.M.
        • Khan S.
        • Leigh-Firbank E.C.
        • et al.
        ApoE polymorphism and fish oil supplementation in subjects with an antherogenic lipoprotein phenotype.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1990-1997
        • Dart A.
        • Sherrard B.
        • Simpson H.
        Influence of apo E phenotype on postprandial triglyceride and glucose responses in subjects with and without coronary heart disease.
        Atherosclerosis. 1997; 130: 161-170
        • Dart A.M.
        • Cooper B.
        Independent effects of Apo E phenotype and plasma triglyceride on lipoprotein particle sizes in the fasting and postprandial states.
        Arterioscler Thromb Vasc Biol. 1999; 19: 2465-2473
        • Kobayashi J.
        • Saito Y.
        • Taira K.
        • et al.
        Effect of apolipoprotein E3/4 phenotype on postprandial triglycerides and retinyl palmitate metabolism in plasma from hyperlipidemic subjects in Japan.
        Atherosclerosis. 2001; 154: 539-546
        • Dallongeville J.
        • Tiret L.
        • Visvikis S.
        • et al.
        Effect of apo E phenotype on plasma postprandial triglyceride levels in young male adults with and without a familial history of myocardial infarction: the EARS II study.
        Atherosclerosis. 1999; 145: 381-388
        • Huang Y.
        • Liu X.Q.
        • Rall Jr., S.C.
        • et al.
        Overexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia.
        J Biol Chem. 1998; 273: 26388-26393
        • Rensen P.C.N.
        • van Berkel T.J.C.
        Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo.
        J Biol Chem. 1996; 271: 14791-14799
        • Gregg R.E.
        • Zech L.A.
        • Schaefer E.J.
        • Stark D.
        • Wilson D.
        • Brewer H.B.
        Abnormal in vivo metabolism of apolipoprotein E4 in humans.
        J Clin Invest. 1986; 78: 815-821
        • Heeren J.
        • Beisiegel U.
        • Grewal T.
        Apolipoprotein E recycling implications for dyslipidemia and atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2006; 26: 442-448
        • Heeren J.
        • Grewal T.
        • Laatsch A.
        • et al.
        Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation.
        J Biol Chem. 2004; 279: 55483-55492
        • Fazio S.
        • Major A.S.
        • Swift L.L.
        • et al.
        Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages.
        J Clin Invest. 2001; 107: 163-171
        • Reznik Y.
        • Morello R.
        • Pousse P.
        • Mahoudeau J.
        • Fradin S.
        The effect of age, body mass index, and fasting triglyceride level on postprandial lipemia is dependent on apolipoprotein E polymorphism in subjects with non-insulin-dependent diabetes mellitus.
        Metabolism. 2002; 51: 1088-1092
        • Stiefel P.
        • Montilla C.
        • Muniz-Grijalvo O.
        • et al.
        Apolipoprotein E gene polymorphism is related to metabolic abnormalities, but does not influence erythrocyte membrane lipid composition or sodium-lithium countertransport activity in essential hypertension.
        Metabolism. 2001; 50: 157-160