Advertisement
Review| Volume 223, ISSUE 1, P69-77, July 2012

Download started.

Ok

Psychological stress, immune response, and atherosclerosis

  • Hong-feng Gu
    Correspondence
    Corresponding author at: Institute of Cardiovascular Research, University of South China, Hengyang, Hunan 421001, China. Tel.: +86 734 8281288; fax: +86 734 8281288.
    Affiliations
    Department of Physiology, University of South China, Hengyang 421001, China

    Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
    Search for articles by this author
  • Chao-ke Tang
    Affiliations
    Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
    Search for articles by this author
  • Yong-zong Yang
    Affiliations
    Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
    Search for articles by this author

      Abstract

      It is well known that psychological stress is associated with increased atherosclerosis. This response is mainly mediated by altered immune reactions due to either activation or depression of the hypothalamic-pituitary-adrenal (HPA) regulatory feed back mechanisms that influence both the vascular endothelium function and the recruitment of circulating monocytes and their conversion to foam cells. Although the detailed mechanisms behind these processes are not well understood, it has been assumed that expression of pro- and anti-inflammatory cytokines by stress hormones, such as catecholamines and corticosteroids, maybe involved. In this review, we focus on evidences that various immunological factors are transformed under prolonged psychological stress by causing vascular low-grade inflammation. A better understanding of the bidirectional communication between the neuroendocrine and immune systems may contribute to new treatment strategies.

      Keywords

      Abbreviations:

      HPA (hypothalamic-pituitary-adrenal), SAM (sympathetic-adrenal-medullary), SNS (sympathetic nervous system), Th1, Th2 (T helper cell type1, T helper cell type 2), NE (norepinephrine), CRF (corticotropin-releasing factor), POMC (proopiomelanocortin), ACTH (adrenocorticotropic hormone), α-MSH (alpha melanocyte-stimulating hormone), CNS (central nervous system), CRP (C-reactive protein), CD (cluster of differentiation), NK (natural killer), CMV (cytomegalovirus), HSV (herpes simplex virus), VZV (varicella zoster virus), IL-1, IL-4, IL-6, IL-8, IL-10 (interleukin-1, interleukin-4, interleukin-6, interleukin-8, interleukin-10), NF-κB (nuclear factor-κB), PBMCs (peripheral blood monocytes), apoE−/− mice (apolipoprotein E knockout mice), LDL (low-density lipoprotein), TLRs, TLR4 (Toll-like receptors, Toll-like receptor 4), PRRs (pattern-recognition receptors), SRs (scavenger receptors), oxLDL (oxidized low density lipoprotein), PAMPs (pathogen-associated molecular patterns), PNI (psychoneuroimmunology), GC (glucocorticoid), MR (mineraloreceptor), GR (glucocorticoid receptor), TNF-α (tumor necrosis factor-alpha), LPS (lipopolysaccharide), APPs (acute phase proteins), APR (acute phase response), HSP (heat shock protein), EDA (extra domain A), DAMPs (damage-associated molecular patterns), siRNA (small interfering RNA), MAPKs (mitogen activated protein kinases), MyD88 (myeloid differentiation factor-88), TRIF (TIR domain-containing adapter protein inducing IFN-β), ACS (acute coronary syndrome), CHD (coronary heart disease), M-CSF (macrophage-colony-stimulating factor), ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), MMPs (matrix-degrading matrix metalloproteinases), β-AR (beta-adrenergic receptor), CI (confidence interval)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rozanski A.
        • Blumenthal J.A.
        • Kaplan J.
        Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy.
        Circulation. 1999; 99: 2192-2217
        • Shively C.A.
        • Musselman D.L.
        • Willard S.L.
        Stress, depression, and coronary artery disease: modeling comorbidity in female primates.
        Neurosci Biobehav Rev. 2009; 33: 133-144
        • Kumari M.
        • Grahame-Clarke C.
        • Shanks N.
        • et al.
        Chronic stress accelerates atherosclerosis in the apolipoprotein E deficient mouse.
        Stress. 2003; 6: 297-299
        • Dimsdale J.E.
        Psychological stress and cardiovascular disease.
        J Am Coll Cardiol. 2008; 51: 1237-1246
        • Lombard J.H.
        Depression, psychological stress, vascular dysfunction, and cardiovascular disease: thinking outside the barrel.
        J Appl Physiol. 2010; 108: 1025-1026
        • Schmidt D.
        • Reber S.O.
        • Botteron C.
        • et al.
        Chronic psychosocial stress promotes systemic immune activation and the development of inflammatory Th cell responses.
        Brain Behav Immun. 2010; 24: 1097-1104
        • Taub D.D.
        Neuroendocrine interactions in the immune system.
        Cell Immunol. 2008; 252: 1-6
        • Whitnall M.H.
        Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system.
        Prog Neurobiol. 1993; 40: 573-629
        • de Kloet E.R.
        • Joels M.
        • Holsboer F.
        Stress and the brain: from adaptation to disease.
        Nat Rev Neurosci. 2005; 6: 463-475
        • Caso J.R.
        • Pradillo J.M.
        • Hurtado O.
        • et al.
        Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke.
        Stroke. 2008; 39: 1314-1320
        • Gibb J.
        • Hayley S.
        • Poulter M.O.
        • et al.
        Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity.
        Brain Behav Immun. 2011; 25: 468-482
        • Powell N.D.
        • Bailey M.T.
        • Mays J.W.
        • et al.
        Repeated social defeat activates dendritic cells and enhances Toll-like receptor dependent cytokine secretion.
        Brain Behav Immun. 2009; 23: 225-231
        • Glaser R.
        • Kiecolt-Glaser J.K.
        Stress-induced immune dysfunction: implications for health.
        Nat Rev Immunol. 2005; 5: 243-251
        • Hajishengallis G.
        • Lambris J.D.
        Microbial manipulation of receptor crosstalk in innate immunity.
        Nat Rev Immunol. 2011; 11: 187-200
        • Gouin J.P.
        Chronic stress, immune dysregulation, and health.
        Am J Lifestyle Med. 2011; 5: 476-485
        • Gouin J.P.
        • Hantsoo L.
        • Kiecolt-Glaser J.K.
        Immune dysregulation and chronic stress among older adults: a review.
        Neuroimmunomodulation. 2008; 15: 251-259
        • Atanackovic D.
        • Schnee B.
        • Schuch G.
        • et al.
        Acute psychological stress alerts the adaptive immune response: stress-induced mobilization of effector T cells.
        J Neuroimmunol. 2006; 176: 141-152
        • Dimitrov S.
        • Lange T.
        • Born J.
        Selective mobilization of cytotoxic leukocytes by epinephrine.
        J Immunol. 2010; 184: 503-511
        • Krohn M.
        • Listing M.
        • Tjahjono G.
        • et al.
        Depression, mood, stress, and Th1/Th2 immune balance in primary breast cancer patients undergoing classical massage therapy, supportive care in cancer.
        Support Care Cancer. 2011; 19: 1303-1311
        • Kop W.J.
        • Gottdiener J.S.
        The role of immune system parameters in the relationship between depression and coronary artery disease.
        Psychosom Med. 2005; 67: S37-S41
        • Hansson G.K.
        • Robertson A.K.
        • Söderberg-Nauclér C.
        Inflammation and atherosclerosis.
        Annu Rev Pathol. 2006; 1: 297-329
        • Brydon L.
        • Walker C.
        • Wawrzyniak A.
        • et al.
        Synergistic effects of psychological and immune stressors on inflammatory cytokine and sickness responses in humans.
        Brain Behav Immun. 2009; 23: 217-224
        • Koo J.W.
        • Russo S.J.
        • Ferguson D.
        • et al.
        Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior.
        Proc Natl Acad Sci USA. 2010; 107: 2669-2674
        • Hansel A.
        • Hong S.
        • Camara R.J.
        • et al.
        Inflammation as a psychophysiological biomarker in chronic psychosocial stress.
        Neurosci Biobehav Rev. 2010; 35: 115-121
        • Dantzer R.
        • O’Connor J.C.
        • Freund G.G.
        • et al.
        From inflammation to sickness and depression: when the immune system subjugates the brain.
        Nat Rev Neurosci. 2008; 9: 46-56
        • Lutgendorf S.K.
        • Garand L.
        • Buckwalter K.C.
        • et al.
        Life stress, mood disturbance, and elevated interleukin-6 in healthy older women.
        J Gerontol A: Biol Sci Med Sci. 1999; 54: M434-M439
        • Hansson G.K.
        • Hermansson A.
        The immune system in atherosclerosis.
        Nat Immunol. 2011; 12: 204-212
        • Michelsen K.S.
        • Wong M.H.
        • Shah P.K.
        • et al.
        Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E.
        Proc Natl Acad Sci USA. 2004; 101: 10679-10684
        • Akira S.
        • Uematsu S.
        • Takeuchi O.
        Pathogen recognition and innate immunity.
        Cell. 2006; 124: 783-801
        • Janeway C.A.
        • Medzhitov R.
        Innate immune recognition.
        Annu Rev Immunol. 2002; 20: 197-216
        • Lundberg A.M.
        • Hansson G.K.
        Innate immune signals in atherosclerosis.
        Clin Immunol. 2010; 134: 5-24
        • Pryshchep O.
        • Ma-Krupa W.
        • Younge B.R.
        • et al.
        Vessel-specific Toll-like receptor profiles in human medium and large arteries.
        Circulation. 2008; 118: 1276-1284
        • McCray C.J.
        • Agarwal S.K.
        Stress and autoimmunity.
        Immunol Allergy Clin North Am. 2011; 31: 1-18
        • Garcia-Bueno B.
        • Caso J.R.
        • Leza J.C.
        Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms.
        Neurosci Biobehav Rev. 2008; 32: 1136-1151
        • Sorrells S.F.
        • Sapolsky R.M.
        An inflammatory review of glucocorticoid actions in the CNS.
        Brain Behav Immun. 2007; 21: 259-272
        • Djordjevic A.
        • Adzic M.
        • Djordjevic J.
        • et al.
        Chronic social isolation suppresses proplastic response and promotes proapoptotic signalling in prefrontal cortex of Wistar rats.
        J Neurosci Res. 2010; 88: 2524-2533
        • de Pablos R.M.
        • Villaran R.F.
        • Arguelles S.
        • et al.
        Stress increases vulnerability to inflammation in the rat prefrontal cortex.
        J Neurosci. 2006; 26: 5709-5719
        • Flierl M.A.
        • Rittirsch D.
        • Nadeau B.A.
        • et al.
        Phagocyte-derived catecholamines enhance acute inflammatory injury.
        Nature. 2007; 449: 721-725
        • Black P.H.
        The inflammatory consequences of psychologic stress: relationship to insulin resistance, obesity, atherosclerosis and diabetes mellitus, type II.
        Med Hypotheses. 2006; 67: 879-891
        • Blandino P.J.
        • Barnum C.J.
        • Deak T.
        The involvement of norepinephrine and microglia in hypothalamic and splenic IL-1beta responses to stress.
        J Neuroimmunol. 2006; 173: 87-95
        • Wolf J.M.
        • Rohleder N.
        • Bierhaus A.
        • et al.
        Determinants of the NF-kappaB response to acute psychosocial stress in humans.
        Brain Behav Immun. 2009; 23: 742-749
        • Gu H.F.
        • Tang C.K.
        • Yang Y.Z.
        • et al.
        Effects of silencing Toll-like receptor 4 expression on the expression of Toll-like receptor 4/nuclear factor-κB signaling pathway in peritoneal macrophages of chronic mild stress apoE−/− mice.
        Chin J Atheroscler. 2011; 19: 6-12
        • Munhoz C.D.
        • Sorrells S.F.
        • Caso J.R.
        • et al.
        Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner.
        J Neurosci. 2010; 30: 13690-13698
        • Lewthwaite J.
        • Owen N.
        • Coates A.
        • et al.
        Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress.
        Circulation. 2002; 106: 196-201
        • Zacharowski K.
        • Zacharowski P.A.
        • Koch A.
        • et al.
        Toll-like receptor 4 plays a crucial role in the immune-adrenal response to systemic inflammatory response syndrome.
        Proc Natl Acad Sci USA. 2006; 103: 6392-6397
        • Zhang Y.
        • Miao J.
        • Hanley G.
        • et al.
        Chronic restraint stress promotes immune suppression through Toll-like receptor 4-mediated phosphoinositide 3-kinase signaling.
        J Neuroimmunol. 2008; 204: 13-19
        • Wang R.P.
        • Yao Q.
        • Xiao Y.B.
        • et al.
        Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model.
        Stress. 2011; 14: 567-575
        • Gu H.F.
        • Tang C.K.
        • Yang Y.Z.
        • et al.
        Effects of chronic mild stress on the development of atherosclerosis and expression of Toll-like receptor 4 signaling pathway in adolescent apolipoprotein E knockout mice.
        J Biomed Biotechnol. 2009; 2009: 1-13
        • Zhu C.B.
        • Blakely R.D.
        • Hewlett W.A.
        The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters.
        Neuropsychopharmacology. 2006; 31: 2121-2131
        • Hayley S.
        Toward an anti-inflammatory strategy for depression.
        Front Behav Neurosci. 2011; 5: 1-7
        • Chandrashekara S.
        • Jayashree K.
        • Veeranna H.B.
        • et al.
        Effects of anxiety on TNF-alpha levels during psychological stress.
        J Psychosom Res. 2007; 63: 65-69
        • Kaplan J.R.
        • Manuck S.B.
        • Clarkson T.B.
        • et al.
        Social status, environment, and atherosclerosis in cynomolgus monkeys.
        Arteriosclerosis. 1982; 2: 359-368
        • Shively C.A.
        • Clarkson T.B.
        • Kaplan J.R.
        Social deprivation and coronary artery atherosclerosis in female cynomolgus monkeys.
        Atherosclerosis. 1989; 77: 69-76
        • Wang H.X.
        • Leineweber C.
        • Kirkeeide R.
        • et al.
        Psychosocial stress and atherosclerosis: family and work stress accelerate progression of coronary disease in women. The Stockholm female coronary angiography study.
        J Intern Med. 2007; 261: 245-254
        • Harris K.F.
        • Matthews K.A.
        • Sutton-Tyrrell K.
        • et al.
        Associations between psychological traits and endothelial function in postmenopausal women.
        Psychosom Med. 2003; 65: 402-409
        • Rickard A.J.
        • Young M.J.
        Corticosteroid receptors, macrophages and cardiovascular disease.
        J Mol Endocrinol. 2009; 42: 449-459
        • Ochoa-Amaya J.E.
        • Malucelli B.E.
        • Cruz-Casallas P.E.
        • et al.
        Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.
        Neuroimmunomodulation. 2010; 17: 386-395
        • Matthews K.A.
        • Zhu S.
        • Tucker D.C.
        • et al.
        Blood pressure reactivity to psychological stress and coronary calcification in the coronary artery risk development in young adults study.
        Hypertension. 2006; 47: 391-395
        • Fujishiro K.
        • Diez-Roux A.V.
        • Landsbergis P.
        • et al.
        Associations of occupation, job control and job demands with intima–media thickness: the multi-ethnic study of atherosclerosis (MESA).
        Occup Environ Med. 2011; 68: 319-326
        • Gidron Y.
        • Gilutz H.
        • Berger R.
        • et al.
        Molecular and cellular interface between behavior and acute coronary syndromes.
        Cardiovasc Res. 2002; 56: 15-21
        • Brydon L.
        • Strike P.C.
        • Bhattacharyya M.R.
        • et al.
        Hostility and physiological responses to laboratory stress in acute coronary syndrome patients.
        J Psychosom Res. 2010; 68: 109-116
        • Albert C.M.
        • Chae C.U.
        • Rexrode K.M.
        • et al.
        Phobic anxiety and risk of coronary heart disease and sudden cardiac death among women.
        Circulation. 2005; 111: 480-487
        • Iso H.
        • Date C.
        • Yamamoto A.
        • et al.
        Perceived mental stress and mortality from cardiovascular disease among Japanese men and women: the Japan collaborative cohort study for evaluation of cancer risk sponsored by Monbusho (JACC study).
        Circulation. 2002; 106: 1229-1236
        • Zhang T.
        • Zhai Y.
        • Yang J.
        • et al.
        Effects of emotional and physiological stress on plaque instability in apolipoprotein E knockout mice.
        J Physiol Biochem. 2011; 67: 401-413
        • Herbert T.B.
        • Cohen S.
        Depression and immunity: a meta-analytic review.
        Psycholo Bull. 1993; 113: 472-486
        • Yamamoto K.
        • Takeshita K.
        • Shimokawa T.
        • et al.
        Plasminogen activator inhibitor-1 is a major stress-regulated gene: implications for stress-induced thrombosis in aged individuals.
        Proc Natl Acad Sci USA. 2002; 99: 890-895