Association of blood lactate with carotid atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study



      Cardiovascular risk factors such as aging, smoking, and insulin resistance may lead to atherosclerosis through various mechanisms of which their association with mitochondrial dysfunction may be one of them. In order to examine this hypothesis, we assessed the association between elevated blood lactate, a marker of mitochondrial dysfunction, and carotid atherosclerosis.


      From a total of 2066 participants from the Atherosclerosis Risk In Communities Carotid MRI study, 1496 were included for this analysis. Wall Thickness and Lipid core presence were measured using gadolinium-enhanced MRI. Blood lactate was categorized into quartiles (Q1: <5.9 mg/dl, Q2: 5.9–7.2 mg/dl, Q3: 7.3–9.2 mg/dl, and Q4: >9.2 mg/dl).


      Of the 1496 study participants, 763 (51%) were females, 296 (19.8%) African American, 539 (36%) obese and 308 (20.6%) had diabetes. There was a strong and graded association between lactate and wall thickness [Q1: 1.08 mm (95% CI: 1.01 mm–1.15 mm), Q2: 1.33 mm (95% CI: 1.19 mm–1.47 mm), Q3: 1.44 (95% CI: 1.34 mm–1.54 mm) and Q4: 1.62 (95% CI: 1.53 mm–1.71 mm); p for trend <0.001] after adjusting for age, gender, ethnicity, stature, body mass index (BMI), waist circumference, LDL, High sensitivity C reactive protein (HsCRP), statin use, thiazolidinedione use, hypertension, and diabetes. This association was attenuated, but still significant, after adjusting for a marker of insulin resistance, the triglyceride/HDL ratio, [Q1: 0.96 mm (95% CI: 0.82 mm–1.10 mm), Q2: 1.17 mm (95% CI: 1.08 mm–1.26 mm), Q3: 1.18 mm (95% CI: 1.07 mm–1.29 mm), Q4: 1.22 mm (95% CI: 1.13 mm–1.31 mm), p for linear trend 0.039]. There was no association of lactate with lipid core presence after adjustment for wall thickness.


      Blood lactate is associated with carotid atherosclerosis. Attenuation of the association with adjustment for triglyceride/HDL ratio, a marker of insulin resistance, suggests that lactate's association with carotid atherosclerosis may be related to insulin resistance.


      • Blood lactate is associated with atherosclerosis measured using carotid MRI.
      • The association is strong and independent of other cardiovascular risk factors.
      • Mitochondrial dysfunction mediates the role of insulin resistance on atherosclerosis.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Madamanchi N.R.
        • Runge M.S.
        Mitochondrial dysfunction in atherosclerosis.
        Circ Res. 2007; 100: 460-473
        • Robinson B.H.
        Lactic acidemia and mitochondrial disease.
        Mol Genet Metab. 2006; 89: 3-13
        • Gerbitz K.D.
        • Gempel K.
        • Brdiczka D.
        Mitochondria and diabetes—genetic, biochemical, and clinical implications of the cellular energy circuit.
        Diabetes. 1996; 45: 113-126
        • Simoneau J.A.
        • Colberg S.R.
        • Thaete F.L.
        • Kelley D.E.
        Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women.
        FASEB J. 1995; 9: 273-278
        • Puddu P.
        • Puddu G.M.
        • Cravero E.
        • De Pascalis S.
        • Muscari A.
        The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis.
        J Biomed Sci. 2009; 16: 112
        • Tanaka H.
        • Seals D.R.
        Endurance exercise performance in masters athletes: age-associated changes and underlying physiological mechanisms.
        J Physiol. 2008; 586: 55-63
        • Jansen T.C.
        • van Bommel J.
        • Bakker J.
        Blood lactate monitoring in critically ill patients: a systematic health technology assessment.
        Crit Care Med. 2009; 37: 2827-2839
        • Avogaro A.
        • Toffolo G.
        • Miola M.
        • et al.
        Intracellular lactate- and pyruvate-interconversion rates are increased in muscle tissue of non-insulin-dependent diabetic individuals.
        J Clin Invest. 1996; 98: 108-115
        • Sandqvist M.M.
        • Eriksson J.W.
        • Jansson P.A.
        Increased lactate release per fat cell in normoglycemic first-degree relatives of individuals with type 2 diabetes.
        Diabetes. 2001; 50: 2344-2348
        • Hosogai N.
        • Fukuhara A.
        • Oshima K.
        • et al.
        Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation.
        Diabetes. 2007; 56: 901-911
        • Crawford S.O.
        • Hoogeveen R.C.
        • Brancati F.L.
        • et al.
        Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study.
        Int J Epidemiol. 2010; 39: 1647-1655
        • The ARIC investigators
        The Atherosclerosis Risk in Communities (ARIC) study: design and objectives—the ARIC investigators.
        Am J Epidemiol. 1989; 129: 687-702
        • Heiss G.
        • Sharrett A.R.
        • Barnes R.
        • Chambless L.E.
        • Szklo M.
        • Alzola C.
        Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study.
        Am J Epidemiol. 1991; 134: 250-256
        • Wasserman B.A.
        • Smith W.I.
        • Trout 3rd, H.H.
        • Cannon 3rd, R.O.
        • Balaban R.S.
        • Arai A.E.
        Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results.
        Radiology. 2002; 223: 566-573
        • Wasserman B.A.
        • Astor B.C.
        • Sharrett A.R.
        • Swingen C.
        • Catellier D.
        MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics.
        J Magn Reson Imaging. 2010; 31: 406-415
        • Virani S.S.
        • Nambi V.
        • Hoogeveen R.
        • et al.
        Relationship between circulating levels of RANTES (regulated on activation, normal T-cell expressed, and secreted) and carotid plaque characteristics: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study.
        Eur Heart J. 2011; 32: 459-468
        • Davis T.M.
        • Jackson D.
        • Davis W.A.
        • Bruce D.G.
        • Chubb P.
        The relationship between metformin therapy and the fasting plasma lactate in type 2 diabetes: the Fremantle Diabetes Study.
        Br J Clin Pharmacol. 2001; 52: 137-144
        • Barhan D.
        • Trinder P.
        An improved colour reagent for the determination of blood glucose by the oxidase system.
        Analyst. 1972; 97: 142
        • ARIC Coordinating Center
        Atherosclerosis risk in communities study protocol: lipid and lipoprotein determinations, manual 8.
        (ARIC study website)1994 ([last accessed 15.06.12])
        • ARIC Coordinating Center
        Atherosclerosis risk in communities study protocol: clinical chemistry determinations, manual 10.
        (ARIC study website)1991 ([last accessed 15.06.12])
        • ARIC Coordinating Center
        Atherosclerosis risk in communities study protocol: cohort component procedures, manual 2.
        (ARIC study website)1997 ([last accessed 15.06.12])
        • UCLA Academic Technology Services
        Analyzing data with a stratified sampling design: stata 9.
        Stata Computing, College Station, Texas2006
        • Astor B.C.
        • Sharrett A.R.
        • Coresh J.
        • Chambless L.E.
        • Wasserman B.A.
        Remodeling of carotid arteries detected with MR imaging: atherosclerosis risk in communities carotid MRI study.
        Radiology. 2010; 256: 879-886
        • Wagenknecht L.
        • Wasserman B.
        • Chambless L.
        • et al.
        Correlates of carotid plaque presence and composition as measured by MRI: the Atherosclerosis Risk in Communities Study.
        Circ Cardiovasc Imaging. 2009; 2: 314-322
        • Saba L.
        • Sanfilippo R.
        • Pascalis L.
        • Montisci R.
        • Caddeo G.
        • Mallarini G.
        Carotid artery wall thickness and ischemic symptoms: evaluation using multi-detector-row CT angiography.
        Eur Radiol. 2008; 18: 1962-1971
        • Zureik M.
        • Ducimetiere P.
        • Touboul P.J.
        • et al.
        Common carotid intima-media thickness predicts occurrence of carotid atherosclerotic plaques: longitudinal results from the aging vascular study (EVA).
        Aterioscler Thromb Vasc Bio. 2000; 20: 1622-1629
        • Inoue K.
        • Matsumoto M.
        • Shono T.
        • Toyokawa S.
        • Moriki A.
        Increased intima-media thickness and atherosclerotic plaque in the carotid artery as risk factors for silent brain infarcts.
        J Stroke Cerebrovasc Dis. 2007; 16: 14-20
        • Pasterkamp G.
        • Schoneveld A.H.
        • van der Wal A.C.
        • et al.
        Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox.
        J Am Coll Cardiol. 1998; 32: 655-662
        • Naghavi M.
        • Libby P.
        • Falk E.
        • et al.
        From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I.
        Circulation. 2003; 108: 1664-1672
        • Kelley D.E.
        • Slasky B.S.
        • Janosky J.
        Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus.
        Am J Clin Nutr. 1991; 54: 509-515
        • Del P.S.
        • Bonadonna R.C.
        • Bonora E.
        • et al.
        Characterization of cellular defects of insulin action in type 2 (non- insulin-dependent) diabetes mellitus.
        J Clin Invest. 1993; 91: 484-494
        • Morino K.
        • Petersen K.F.
        • Dufour S.
        • et al.
        Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.
        J Clin Invest. 2005; 115: 3587-3593
        • Kelley D.E.
        • He J.
        • Menshikova E.V.
        • Ritov V.B.
        Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.
        Diabetes. 2002; 51: 2944-2950
        • Patti M.E.
        • Butte A.J.
        • Crunkhorn S.
        • et al.
        Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1.
        Proc Natl Acad Sci USA. 2003; 100: 8466-8471
        • Mootha V.K.
        • Lindgren C.M.
        • Eriksson K.F.
        • et al.
        PGC-1alpharesponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
        Nat Genet. 2003; 34: 267-273
        • Petersen K.F.
        • Dufour S.
        • Befroy D.
        • Garcia R.
        • Shulman G.I.
        Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.
        N Engl J Med. 2004; 350: 664-671
        • Bruce C.R.
        • Anderson M.J.
        • Carey A.L.
        • et al.
        Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status.
        J Clin Endocrinol Metab. 2003; 88: 5444-5451
        • Lowell B.B.
        • Shulman G.I.
        Mitochondrial dysfunction and type 2 diabetes.
        Science. 2005; 307: 384-387