Advertisement

Interactions between inflammation and lipid metabolism: Relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis

  • Author Footnotes
    1 Both authors contributed equally.
    Janna A. van Diepen
    Footnotes
    1 Both authors contributed equally.
    Affiliations
    Dept. of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands

    Dept. of General Internal Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands

    Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally.
    Jimmy F.P. Berbée
    Correspondence
    Corresponding author. Dept. of Endocrinology and Metabolic Diseases, Post Zone C7-Q, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands. Tel.: +31 71 5261830; fax: +31 71 524 8136.
    Footnotes
    1 Both authors contributed equally.
    Affiliations
    Dept. of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands

    Dept. of Medicine, University of Patras Medical School, Rio, Greece

    Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
    Search for articles by this author
  • Louis M. Havekes
    Affiliations
    Dept. of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands

    Dept. of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands

    Dept. of Biomedical Research, TNO-Quality of Life, Gaubius Laboratory, P.O. Box 2215, 2301 CE Leiden, The Netherlands

    Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
    Search for articles by this author
  • Patrick C.N. Rensen
    Affiliations
    Dept. of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands

    Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally.

      Abstract

      Dyslipidemia and inflammation are well known causal risk factors the development of atherosclerosis. The interplay between lipid metabolism and inflammation at multiple levels in metabolic active tissues may exacerbate the development of atherosclerosis, and will be discussed in this review. Cholesterol, fatty acids and modified lipids can directly activate inflammatory pathways. In addition, circulating (modified) lipoproteins modulate the activity of leukocytes. Vice versa, proinflammatory signaling (i.e. cytokines) in pre-clinical models directly affects lipid metabolism. Whereas the main lipid-lowering drugs all have potent anti-inflammatory actions, the lipid-modulating actions of anti-inflammatory agents appear to be less straightforward. The latter have mainly been evaluated in pre-clinical models and in patients with chronic inflammatory diseases, which will be discussed. The clinical trials that are currently conducted to evaluate the efficacy of anti-inflammatory agents in the treatment of cardiovascular diseases may additionally reveal potential (beneficial) effects of these therapeutics on lipid metabolism in the general population at risk for CVD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steinberg D.
        Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime.
        Nat Med. 2002; 8: 1211-1217
        • Ross R.
        • Harker L.
        Hyperlipidemia and atherosclerosis.
        Science. 1976; 193: 1094-1100
        • Chapman M.J.
        Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease.
        Pharmacol Ther. 2006; 111: 893-908
        • Zhu X.
        • Parks J.S.
        New roles of HDL in inflammation and hematopoiesis.
        Annu Rev Nutr. 2012; 32: 161-182
        • Navab M.
        • Reddy S.T.
        • Van Lenten B.J.
        • et al.
        The role of dysfunctional HDL in atherosclerosis.
        J Lipid Res. 2009; 50: S145-S149
        • Hansson G.K.
        • Hermansson A.
        The immune system in atherosclerosis.
        Nat Immunol. 2011; 12: 204-212
        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • de Winther M.P.
        • Kanters E.
        • Kraal G.
        • et al.
        Nuclear factor kappaB signaling in atherogenesis.
        Arterioscler Thromb Vasc Biol. 2005; 25: 904-914
        • Manning A.M.
        • Davis R.J.
        Targeting JNK for therapeutic benefit: from junk to gold?.
        Nat Rev Drug Discov. 2003; 2: 554-565
        • Tedgui A.
        • Mallat Z.
        Cytokines in atherosclerosis: pathogenic and regulatory pathways.
        Physiol Rev. 2006; 86: 515-581
        • Yan S.F.
        • Harja E.
        • Andrassy M.
        • et al.
        Protein kinase C beta/early growth response-1 pathway: a key player in ischemia, atherosclerosis, and restenosis.
        J Am Coll Cardiol. 2006; 48: A47-A55
        • Tannock L.R.
        • O'Brien K.D.
        • Knopp R.H.
        • et al.
        Cholesterol feeding increases C-reactive protein and serum amyloid A levels in lean insulin-sensitive subjects.
        Circulation. 2005; 111: 3058-3062
        • Hotamisligil G.S.
        • Arner P.
        • Caro J.F.
        • et al.
        Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.
        J Clin Invest. 1995; 95: 2409-2415
        • Snel M.
        • Diepen J.A.
        • Stijnen T.
        • et al.
        Immediate and long-term effects of addition of exercise to a 16-week very low calorie diet on low-grade inflammation in obese, insulin-dependent type 2 diabetic patients.
        Food Chem Toxicol. 2011;
        • Visser M.
        • Bouter L.M.
        • McQuillan G.M.
        • et al.
        Elevated C-reactive protein levels in overweight and obese adults.
        JAMA. 1999; 282: 2131-2135
        • Cani P.D.
        • Amar J.
        • Iglesias M.A.
        • et al.
        Metabolic endotoxemia initiates obesity and insulin resistance.
        Diabetes. 2007; 56: 1761-1772
        • Weisberg S.P.
        • McCann D.
        • Desai M.
        • et al.
        Obesity is associated with macrophage accumulation in adipose tissue.
        J Clin Invest. 2003; 112: 1796-1808
        • Kleemann R.
        • Verschuren L.
        • van Erk M.J.
        • et al.
        Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis.
        Genome Biol. 2007; 8: R200
        • Wouters K.
        • van Gorp P.J.
        • Bieghs V.
        • et al.
        Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis.
        Hepatology. 2008; 48: 474-486
        • de Vries-van der Weij
        • Toet K.
        • Zadelaar S.
        • et al.
        Anti-inflammatory salicylate beneficially modulates pre-existing atherosclerosis through quenching of NF-kappaB activity and lowering of cholesterol.
        Atherosclerosis. 2010; 213: 241-246
        • Cai D.
        • Yuan M.
        • Frantz D.F.
        • et al.
        Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB.
        Nat Med. 2005; 11: 183-190
        • Bieghs V.
        • Wouters K.
        • van Gorp P.J.
        • et al.
        Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice.
        Gastroenterology. 2010; 138: 2477-2486
        • Leonarduzzi G.
        • Gamba P.
        • Gargiulo S.
        • et al.
        Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis.
        Free Radic Biol Med. 2012; 52: 19-34
        • Wong M.C.
        • van Diepen J.A.
        • Hu L.
        • et al.
        Hepatocyte-specific IKKbeta expression aggravates atherosclerosis development in APOE*3-Leiden mice.
        Atherosclerosis. 2012; 220: 362-368
        • Lewis K.E.
        • Kirk E.A.
        • McDonald T.O.
        • et al.
        Increase in serum amyloid a evoked by dietary cholesterol is associated with increased atherosclerosis in mice.
        Circulation. 2004; 110: 540-545
        • Bieghs V.
        • Rensen P.C.
        • Hofker M.H.
        • et al.
        NASH and atherosclerosis are two aspects of a shared disease: central role for macrophages.
        Atherosclerosis. 2011;
        • van Tits L.J.
        • Stienstra R.
        • van Lent P.L.
        • et al.
        Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2.
        Atherosclerosis. 2011; 214: 345-349
        • Greig F.H.
        • Kennedy S.
        • Spickett C.M.
        Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation.
        Free Radic Biol Med. 2012; 52: 266-280
        • Duewell P.
        • Kono H.
        • Rayner K.J.
        • et al.
        NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.
        Nature. 2010; 464: 1357-1361
        • Rajamaki K.
        • Lappalainen J.
        • Oorni K.
        • et al.
        Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation.
        PLoS One. 2010; 5: e11765
        • Alipour A.
        • van Oostrom A.J.
        • Izraeljan A.
        • et al.
        Leukocyte activation by triglyceride-rich lipoproteins.
        Arterioscler Thromb Vasc Biol. 2008; 28: 792-797
        • Maganto-Garcia E.
        • Tarrio M.L.
        • Grabie N.
        • et al.
        Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia.
        Circulation. 2011; 124: 185-195
        • Patel S.
        • Di Bartolo B.A.
        • Nakhla S.
        • et al.
        Anti-inflammatory effects of apolipoprotein A-I in the rabbit.
        Atherosclerosis. 2010; 212: 392-397
        • Cai L.
        • Wang Z.
        • Meyer J.M.
        • et al.
        Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages.
        J Lipid Res. 2012; 53: 1472-1481
        • Tolle M.
        • Levkau B.
        • Kleuser B.
        • et al.
        Sphingosine-1-phosphate and FTY720 as anti-atherosclerotic lipid compounds.
        Eur J Clin Invest. 2007; 37: 171-179
        • Nofer J.R.
        • Bot M.
        • Brodde M.
        • et al.
        FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice.
        Circulation. 2007; 115: 501-508
        • Norata G.D.
        • Catapano A.L.
        HDL and adaptive immunity: a tale of lipid rafts.
        Atherosclerosis. 2012; 225: 34-35
        • Woo J.M.
        • Lin Z.
        • Navab M.
        • et al.
        Treatment with apolipoprotein A-1 mimetic peptide reduces lupus-like manifestations in a murine lupus model of accelerated atherosclerosis.
        Arthritis Res Ther. 2010; 12: R93
        • Shi H.
        • Kokoeva M.V.
        • Inouye K.
        • et al.
        TLR4 links innate immunity and fatty acid-induced insulin resistance.
        J Clin Invest. 2006; 116: 3015-3025
        • Lee J.Y.
        • Zhao L.
        • Youn H.S.
        • et al.
        Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1.
        J Biol Chem. 2004; 279: 16971-16979
        • Schwartz E.A.
        • Zhang W.Y.
        • Karnik S.K.
        • et al.
        Nutrient modification of the innate immune response: a novel mechanism by which saturated fatty acids greatly amplify monocyte inflammation.
        Arterioscler Thromb Vasc Biol. 2010; 30: 802-808
        • Oh D.Y.
        • Lagakos W.S.
        The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.
        Curr Opin Clin Nutr Metab Care. 2011; 14: 322-327
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Nilsson N.E.
        • Kotarsky K.
        • Owman C.
        • et al.
        Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids.
        Biochem Biophys Res Commun. 2003; 303: 1047-1052
        • Wang J.
        • Wu X.
        • Simonavicius N.
        • et al.
        Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.
        J Biol Chem. 2006; 281: 34457-34464
        • Oh D.Y.
        • Talukdar S.
        • Bae E.J.
        • et al.
        GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects.
        Cell. 2010; 142: 687-698
        • Adkins Y.
        • Kelley D.S.
        Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids.
        J Nutr Biochem. 2010; 21: 781-792
        • Berquin I.M.
        • Edwards I.J.
        • Chen Y.Q.
        Multi-targeted therapy of cancer by omega-3 fatty acids.
        Cancer Lett. 2008; 269: 363-377
        • Margioris A.N.
        Fatty acids and postprandial inflammation.
        Curr Opin Clin Nutr Metab Care. 2009; 12: 129-137
        • Chawla A.
        Control of macrophage activation and function by PPARs.
        Circ Res. 2010; 106: 1559-1569
        • Duan S.Z.
        • Usher M.G.
        • Mortensen R.M.
        PPARs: the vasculature, inflammation and hypertension.
        Curr Opin Nephrol Hypertens. 2009; 18: 128-133
        • Staels B.
        • Koenig W.
        • Habib A.
        • et al.
        Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators.
        Nature. 1998; 393: 790-793
        • Delerive P.
        • Gervois P.
        • Fruchart J.C.
        • et al.
        Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators.
        J Biol Chem. 2000; 275: 36703-36707
        • Marx N.
        • Sukhova G.K.
        • Collins T.
        • et al.
        PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells.
        Circulation. 1999; 99: 3125-3131
        • Kooistra T.
        • Verschuren L.
        • de Vries-van der Weij
        • et al.
        Fenofibrate reduces atherogenesis in ApoE*3Leiden mice: evidence for multiple antiatherogenic effects besides lowering plasma cholesterol.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2322-2330
        • Odegaard J.I.
        • Ricardo-Gonzalez R.R.
        • Goforth M.H.
        • et al.
        Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.
        Nature. 2007; 447: 1116-1120
        • Mukundan L.
        • Odegaard J.I.
        • Morel C.R.
        • et al.
        PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance.
        Nat Med. 2009; 15: 1266-1272
        • Lee C.H.
        • Chawla A.
        • Urbiztondo N.
        • et al.
        Transcriptional repression of atherogenic inflammation: modulation by PPARdelta.
        Science. 2003; 302: 453-457
        • Choi J.M.
        • Bothwell A.L.
        The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases.
        Mol Cells. 2012; 33: 217-222
        • Cipolletta D.
        • Feuerer M.
        • Li A.
        • et al.
        PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells.
        Nature. 2012; 486: 549-553
        • Venkateswaran A.
        • Laffitte B.A.
        • Joseph S.B.
        • et al.
        Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha.
        Proc Natl Acad Sci U S A. 2000; 97: 12097-12102
        • Hong C.
        • Tontonoz P.
        Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors.
        Curr Opin Genet Dev. 2008; 18: 461-467
        • Joseph S.B.
        • Castrillo A.
        • Laffitte B.A.
        • et al.
        Reciprocal regulation of inflammation and lipid metabolism by liver X receptors.
        Nat Med. 2003; 9: 213-219
        • Im S.S.
        • Osborne T.F.
        Liver X receptors in atherosclerosis and inflammation.
        Circ Res. 2011; 108: 996-1001
        • Michael D.R.
        • Ashlin T.G.
        • Buckley M.L.
        • et al.
        Liver X receptors, atherosclerosis and inflammation.
        Curr Atheroscler Rep. 2012; 14: 284-293
        • Bensinger S.J.
        • Bradley M.N.
        • Joseph S.B.
        • et al.
        LXR signaling couples sterol metabolism to proliferation in the acquired immune response.
        Cell. 2008; 134: 97-111
        • Joseph S.B.
        • McKilligin E.
        • Pei L.
        • et al.
        Synthetic LXR ligand inhibits the development of atherosclerosis in mice.
        Proc Natl Acad Sci U S A. 2002; 99: 7604-7609
        • Cha J.Y.
        • Repa J.J.
        The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR.
        J Biol Chem. 2007; 282: 743-751
        • Kratzer A.
        • Buchebner M.
        • Pfeifer T.
        • et al.
        Synthetic LXR agonist attenuates plaque formation in apoE-/- mice without inducing liver steatosis and hypertriglyceridemia.
        J Lipid Res. 2009; 50: 312-326
        • Hollman D.A.
        • Milona A.
        • van Erpecum K.J.
        • et al.
        Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms.
        Biochim Biophys Acta. 2012; 1821: 1443-1452
        • Xu Z.
        • Huang G.
        • Gong W.
        • et al.
        FXR ligands protect against hepatocellular inflammation via SOCS3 induction.
        Cell Signal. 2012; 24: 1658-1664
        • Gadaleta R.M.
        • van Erpecum K.J.
        • Oldenburg B.
        • et al.
        Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease.
        Gut. 2011; 60: 463-472
        • Vavassori P.
        • Mencarelli A.
        • Renga B.
        • et al.
        The bile acid receptor FXR is a modulator of intestinal innate immunity.
        J Immunol. 2009; 183: 6251-6261
        • Guo G.L.
        • Santamarina-Fojo S.
        • Akiyama T.E.
        • et al.
        Effects of FXR in foam-cell formation and atherosclerosis development.
        Biochim Biophys Acta. 2006; 1761: 1401-1409
        • Hanniman E.A.
        • Lambert G.
        • McCarthy T.C.
        • et al.
        Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice.
        J Lipid Res. 2005; 46: 2595-2604
        • Zhang Y.
        • Wang X.
        • Vales C.
        • et al.
        FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2316-2321
        • Hambruch E.
        • Miyazaki-Anzai S.
        • Hahn U.
        • et al.
        Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice.
        J Pharmacol Exp Ther. 2012; 343: 556-567
        • Hartman H.B.
        • Gardell S.J.
        • Petucci C.J.
        • et al.
        Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE-/- mice.
        J Lipid Res. 2009; 50: 1090-1100
        • Mencarelli A.
        • Renga B.
        • Distrutti E.
        • et al.
        Antiatherosclerotic effect of farnesoid X receptor.
        Am J Physiol Heart Circ Physiol. 2009; 296: H272-H281
        • Sammalkorpi K.
        • Valtonen V.
        • Kerttula Y.
        • et al.
        Changes in serum lipoprotein pattern induced by acute infections.
        Metabolism. 1988; 37: 859-865
        • Khovidhunkit W.
        • Kim M.S.
        • Memon R.A.
        • et al.
        Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host.
        J Lipid Res. 2004; 45: 1169-1196
        • Berbee J.F.
        • Havekes L.M.
        • Rensen P.C.
        Apolipoproteins modulate the inflammatory response to lipopolysaccharide.
        J Endotoxin Res. 2005; 11: 97-103
        • Feingold K.R.
        • Staprans I.
        • Memon R.A.
        • et al.
        Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance.
        J Lipid Res. 1992; 33: 1765-1776
        • Feingold K.R.
        • Grunfeld C.
        Role of cytokines in inducing hyperlipidemia.
        Diabetes. 1992; 41: 97-101
        • Feingold K.R.
        • Grunfeld C.
        Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo.
        J Clin Invest. 1987; 80: 184-190
        • Hudgins L.C.
        • Parker T.S.
        • Levine D.M.
        • et al.
        A single intravenous dose of endotoxin rapidly alters serum lipoproteins and lipid transfer proteins in normal volunteers.
        J Lipid Res. 2003; 44: 1489-1498
        • van Leeuwen H.J.
        • Heezius E.C.
        • Dallinga G.M.
        • et al.
        Lipoprotein metabolism in patients with severe sepsis.
        Crit Care Med. 2003; 31: 1359-1366
        • Westerterp M.
        • Berbee J.F.
        • Pires N.M.
        • et al.
        Apolipoprotein C-I is crucially involved in lipopolysaccharide-induced atherosclerosis development in apolipoprotein E-knockout mice.
        Circulation. 2007; 116: 2173-2181
        • Maekawa T.
        • Takahashi N.
        • Tabeta K.
        • et al.
        Chronic oral infection with Porphyromonas gingivalis accelerates atheroma formation by shifting the lipid profile.
        PLoS One. 2011; 6: e20240
        • Memon R.A.
        • Staprans I.
        • Noor M.
        • et al.
        Infection and inflammation induce LDL oxidation in vivo.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1536-1542
        • van Diepen J.A.
        • Wong M.C.
        • Guigas B.
        • et al.
        Hepatocyte-specific IKK-{beta} activation enhances VLDL-triglyceride production in APOE*3-Leiden mice.
        J Lipid Res. 2011; 52: 942-950
        • Park Y.B.
        • Lee S.K.
        • Lee W.K.
        • et al.
        Lipid profiles in untreated patients with rheumatoid arthritis.
        J Rheumatol. 1999; 26: 1701-1704
        • Myasoedova E.
        • Crowson C.S.
        • Kremers H.M.
        • et al.
        Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease.
        Ann Rheum Dis. 2011; 70: 482-487
        • Mirjafari H.
        • Al-Husain A.
        • Bruce I.N.
        Cardiovascular risk factors in inflammatory arthritis.
        Curr Opin Lipidol. 2011; 22: 296-301
        • Borba E.F.
        • Carvalho J.F.
        • Bonfa E.
        Mechanisms of dyslipoproteinemias in systemic lupus erythematosus.
        Clin Dev Immunol. 2006; 13: 203-208
        • Svenungsson E.
        • Gunnarsson I.
        • Fei G.Z.
        • et al.
        Elevated triglycerides and low levels of high-density lipoprotein as markers of disease activity in association with up-regulation of the tumor necrosis factor alpha/tumor necrosis factor receptor system in systemic lupus erythematosus.
        Arthritis Rheum. 2003; 48: 2533-2540
        • Charles-Schoeman C.
        • Lee Y.Y.
        • Grijalva V.
        • et al.
        Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis.
        Ann Rheum Dis. 2012; 71: 1157-1162
        • McMahon M.
        • Grossman J.
        • Fitzgerald J.
        • et al.
        Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis.
        Arthritis Rheum. 2006; 54: 2541-2549
        • Bu D.X.
        • Griffin G.
        • Lichtman A.H.
        Mechanisms for the anti-inflammatory effects of statins.
        Curr Opin Lipidol. 2011; 22: 165-170
        • Florentin M.
        • Liberopoulos E.N.
        • Kei A.
        • et al.
        Pleiotropic effects of nicotinic acid: beyond high density lipoprotein cholesterol elevation.
        Curr Vasc Pharmacol. 2011; 9: 385-400
        • Libby P.
        • Plutzky J.
        Inflammation in diabetes mellitus: role of peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-gamma agonists.
        Am J Cardiol. 2007; 99: 27B-40B
        • Delerive P.
        • De B.K.
        • Besnard S.
        • et al.
        Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1.
        J Biol Chem. 1999; 274: 32048-32054
        • Lukasova M.
        • Malaval C.
        • Gille A.
        • et al.
        Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells.
        J Clin Invest. 2011; 121: 1163-1173
        • Charo I.F.
        • Taub R.
        Anti-inflammatory therapeutics for the treatment of atherosclerosis.
        Nat Rev Drug Discov. 2011; 10: 365-376
        • Awtry E.H.
        • Loscalzo J.
        Aspirin.
        Circulation. 2000; 101: 1206-1218
        • Cyrus T.
        • Sung S.
        • Zhao L.
        • et al.
        Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice.
        Circulation. 2002; 106: 1282-1287
        • Ikonomidis I.
        • Andreotti F.
        • Economou E.
        • et al.
        Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin.
        Circulation. 1999; 100: 793-798
        • Yin M.J.
        • Yamamoto Y.
        • Gaynor R.B.
        The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta.
        Nature. 1998; 396: 77-80
        • Brand K.
        • Page S.
        • Rogler G.
        • et al.
        Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion.
        J Clin Invest. 1996; 97: 1715-1722
        • Ridker P.M.
        • Cushman M.
        • Stampfer M.J.
        • et al.
        Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men.
        N Engl J Med. 1997; 336: 973-979
        • Higgs G.A.
        • Salmon J.A.
        • Henderson B.
        • et al.
        Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity.
        Proc Natl Acad Sci U S A. 1987; 84: 1417-1420
        • Amann R.
        • Peskar B.A.
        Anti-inflammatory effects of aspirin and sodium salicylate.
        Eur J Pharmacol. 2002; 447: 1-9
        • Yu Y.
        • Ricciotti E.
        • Scalia R.
        • et al.
        Vascular COX-2 modulates blood pressure and thrombosis in mice.
        Sci Transl Med. 2012; 4: 132-154
        • Sommariva D.
        • Bonfiglioli D.
        • Zanaboni L.
        • et al.
        Effects of acetylsalicylic acid on plasma lipids and on post-heparin lipase activities.
        Int J Clin Pharmacol Ther Toxicol. 1981; 19: 112-116
        • Wooles W.R.
        • Borzelleca J.F.
        • Branham Jr., G.W.
        Effect of acute and prolonged salicylate administration on liver and plasma triglyceride levels and diet-induced hypercholesterolemia.
        Toxicol Appl Pharmacol. 1967; 10: 1-7
        • Beynen A.C.
        • Buechler K.F.
        • van der Molen A.J.
        • et al.
        Inhibition of hepatic lipogenesis by salicylate.
        Toxicology. 1982; 24: 33-43
        • Bizzi A.
        • Codegoni A.M.
        • Garattini S.
        Salicylate, a powerful inhibitor of free fatty acid release.
        Nature. 1964; 204: 1205
        • van Diepen J.A.
        • Vroegrijk I.O.
        • Berbee J.F.
        • et al.
        Aspirin reduces hypertriglyceridemia by lowering VLDL-triglyceride production in mice fed a high-fat diet.
        Am J Physiol Endocrinol Metab. 2011; 301: E1099-E1107
        • Goldfine A.B.
        • Fonseca V.
        • Jablonski K.A.
        • et al.
        The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial.
        Ann Intern Med. 2010; 152: 346-357
        • Faghihimani E.
        • Aminorroaya A.
        • Rezvanian H.
        • et al.
        Salsalate reduces insulin resistance and plasma glucose level in persons with prediabetes.
        Endocr Pract. 2012; : 1-17
        • Johnston A.
        • Gudjonsson J.E.
        • Sigmundsdottir H.
        • et al.
        The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules.
        Clin Immunol. 2005; 114: 154-163
        • Brody M.
        • Bohm I.
        • Bauer R.
        Mechanism of action of methotrexate: experimental evidence that methotrexate blocks the binding of interleukin 1 beta to the interleukin 1 receptor on target cells.
        Eur J Clin Chem Clin Biochem. 1993; 31: 667-674
        • Choi H.K.
        • Hernan M.A.
        • Seeger J.D.
        • et al.
        Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study.
        Lancet. 2002; 359: 1173-1177
        • Prodanovich S.
        • Ma F.
        • Taylor J.R.
        • et al.
        Methotrexate reduces incidence of vascular diseases in veterans with psoriasis or rheumatoid arthritis.
        J Am Acad Dermatol. 2005; 52: 262-267
        • Georgiadis A.N.
        • Papavasiliou E.C.
        • Lourida E.S.
        • et al.
        Atherogenic lipid profile is a feature characteristic of patients with early rheumatoid arthritis: effect of early treatment–a prospective, controlled study.
        Arthritis Res Ther. 2006; 8: R82
        • Park Y.B.
        • Choi H.K.
        • Kim M.Y.
        • et al.
        Effects of antirheumatic therapy on serum lipid levels in patients with rheumatoid arthritis: a prospective study.
        Am J Med. 2002; 113: 188-193
        • Bulgarelli A.
        • Martins Dias A.A.
        • Caramelli B.
        • et al.
        Treatment with methotrexate inhibits atherogenesis in cholesterol-fed rabbits.
        J Cardiovasc Pharmacol. 2012; 59: 308-314
        • Ridker P.M.
        Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT).
        J Thromb Haemost. 2009; 7: 332-339
        • Jacobsson L.T.
        • Turesson C.
        • Gulfe A.
        • et al.
        Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis.
        J Rheumatol. 2005; 32: 1213-1218
        • Pollono E.N.
        • Lopez-Olivo M.A.
        • Lopez J.A.
        • et al.
        A systematic review of the effect of TNF-alpha antagonists on lipid profiles in patients with rheumatoid arthritis.
        Clin Rheumatol. 2010; 29: 947-955
        • Kleemann R.
        • Zadelaar S.
        • Kooistra T.
        Cytokines and atherosclerosis: a comprehensive review of studies in mice.
        Cardiovasc Res. 2008; 79: 360-376
        • Elhage R.
        • Maret A.
        • Pieraggi M.T.
        • et al.
        Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice.
        Circulation. 1998; 97: 242-244
        • Yazdani-Biuki B.
        • Stelzl H.
        • Brezinschek H.P.
        • et al.
        Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-alpha antibody infliximab.
        Eur J Clin Invest. 2004; 34: 641-642
        • Araujo E.P.
        • de Souza C.T.
        • Ueno M.
        • et al.
        Infliximab restores glucose homeostasis in an animal model of diet-induced obesity and diabetes.
        Endocrinology. 2007; 148: 5991-5997
        • Wascher T.C.
        • Lindeman J.H.
        • Sourij H.
        • et al.
        Chronic TNF-alpha neutralization does not improve insulin resistance or endothelial function in "healthy" men with metabolic syndrome.
        Mol Med. 2011; 17: 189-193
        • Ridker P.M.
        • Rifai N.
        • Stampfer M.J.
        • et al.
        Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men.
        Circulation. 2000; 101: 1767-1772
        • Hingorani A.D.
        • Casas J.P.
        The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis.
        Lancet. 2012; 379: 1214-1224
        • Sarwar N.
        • Butterworth A.S.
        • Freitag D.F.
        • et al.
        Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies.
        Lancet. 2012; 379: 1205-1213
        • Senolt L.
        • Vencovsky J.
        • Pavelka K.
        • et al.
        Prospective new biological therapies for rheumatoid arthritis.
        Autoimmun Rev. 2009; 9: 102-107
        • Schuett H.
        • Oestreich R.
        • Waetzig G.H.
        • et al.
        Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice.
        Arterioscler Thromb Vasc Biol. 2012; 32: 281-290
        • Kawashiri S.Y.
        • Kawakami A.
        • Yamasaki S.
        • et al.
        Effects of the anti-interleukin-6 receptor antibody, tocilizumab, on serum lipid levels in patients with rheumatoid arthritis.
        Rheumatol Int. 2011; 31: 451-456
        • Maini R.N.
        • Taylor P.C.
        • Szechinski J.
        • et al.
        Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate.
        Arthritis Rheum. 2006; 54: 2817-2829
        • Nishimoto N.
        • Ito K.
        • Takagi N.
        Safety and efficacy profiles of tocilizumab monotherapy in Japanese patients with rheumatoid arthritis: meta-analysis of six initial trials and five long-term extensions.
        Mod Rheumatol. 2010; 20: 222-232
        • Olofsson P.S.
        • Sheikine Y.
        • Jatta K.
        • et al.
        A functional interleukin-1 receptor antagonist polymorphism influences atherosclerosis development. The interleukin-1beta: interleukin-1 receptor antagonist balance in atherosclerosis.
        Circ J. 2009; 73: 1531-1536
        • Marculescu R.
        • Endler G.
        • Schillinger M.
        • et al.
        Interleukin-1 receptor antagonist genotype is associated with coronary atherosclerosis in patients with type 2 diabetes.
        Diabetes. 2002; 51: 3582-3585
        • Merhi-Soussi F.
        • Kwak B.R.
        • Magne D.
        • et al.
        Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice.
        Cardiovasc Res. 2005; 66: 583-593
        • Dewberry R.
        • Holden H.
        • Crossman D.
        • et al.
        Interleukin-1 receptor antagonist expression in human endothelial cells and atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2000; 20: 2394-2400
        • Argiles J.M.
        • Lopez-Soriano F.J.
        • Evans R.D.
        • et al.
        Interleukin-1 and lipid metabolism in the rat.
        Biochem J. 1989; 259: 673-678
        • Isoda K.
        • Sawada S.
        • Ishigami N.
        • et al.
        Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice.
        Arterioscler Thromb Vasc Biol. 2004; 24: 1068-1073
        • Isoda K.
        • Sawada S.
        • Ayaori M.
        • et al.
        Deficiency of interleukin-1 receptor antagonist deteriorates fatty liver and cholesterol metabolism in hypercholesterolemic mice.
        J Biol Chem. 2005; 280: 7002-7009
        • Gado-Lista J.
        • Garcia-Rios A.
        • Perez-Martinez P.
        • et al.
        Interleukin 1B variant -1473G/C (rs1143623) influences triglyceride and interleukin 6 metabolism.
        J Clin Endocrinol Metab. 2011; 96: E816-E820
        • Ikonomidis I.
        • Lekakis J.P.
        • Nikolaou M.
        • et al.
        Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis.
        Circulation. 2008; 117: 2662-2669
        • van Asseldonk E.J.
        • Stienstra R.
        • Koenen T.B.
        • et al.
        Treatment with anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study.
        J Clin Endocrinol Metab. 2011; 96: 2119-2126
        • Ridker P.M.
        • Thuren T.
        • Zalewski A.
        • et al.
        Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS).
        Am Heart J. 2011; 162: 597-605
        • Ridker P.M.
        • Howard C.P.
        • Walter V.
        • et al.
        Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, c-reactive protein, Interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial.
        Circulation. 2012; 126: 2739-2748