Advertisement

Physical activity, ethnicity and cardio-metabolic health: Does one size fit all?

  • Jason M.R. Gill
    Correspondence
    Corresponding author. BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK. Tel.: +44 (0) 141 3302916; fax: +44 (0) 141 3305481.
    Affiliations
    Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
    Search for articles by this author
  • Carlos A. Celis-Morales
    Affiliations
    Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle on Tyne, UK
    Search for articles by this author
  • Nazim Ghouri
    Affiliations
    Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
    Search for articles by this author

      Abstract

      A large and consistent body of epidemiological evidence indicates that low levels of physical activity, low levels of cardiorespiratory fitness and high levels of sedentary behaviour are associated with increased risk of cardio-metabolic diseases. However, most such studies have been undertaken in populations of White European descent. The available data from non-White populations suggests that physical activity is also protective in these groups, but the threshold level of activity needed to confer low risk, particularly for type 2 diabetes, may not be the same across all ethnic groups. In patients with impaired glucose regulation, lifestyle interventions, including physical activity as a component (often in combination with weight loss), are effective at reducing risk of incident diabetes across a range of ethnic groups. However, the optimal levels of physical activity for prevention of diabetes and cardiovascular disease amongst the general populations of different ethnic groups have not been firmly established. Emerging data suggest that innate differences in cardiorespiratory fitness levels and capacity for fat oxidation potentially contribute to ethnic differences in the cardio-metabolic risk profile and that ethnicity–specific physical activity guidelines may be conceptually warranted. More study is needed to understand how and why the dose–response relationship between physical activity and cardio-metabolic risk differs according to ethnicity and to determine the best approaches to promote physical activity in non-White ethnic groups.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Warburton D.E.
        • Charlesworth S.
        • Ivey A.
        • Nettlefold L.
        • Bredin S.S.
        A systematic review of the evidence for Canada's physical activity guidelines for adults.
        Int J Behav Nutr Phys Act. 2010; 7 (1479-5868-7-39 [pii]): 39https://doi.org/10.1186/1479-5868-7-39
        • Gill J.M.
        • Cooper A.R.
        Physical activity and prevention of type 2 diabetes mellitus.
        Sports Med. 2008; 38: 807-824
        • Nocon M.
        • Hiemann T.
        • Muller-Riemenschneider F.
        • Thalau F.
        • Roll S.
        • Willich S.N.
        Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis.
        Eur J Cardiovasc Prev Rehabil. 2008; 15 (00149831-200806000-00001 [pii]): 239-246https://doi.org/10.1097/HJR.0b013e3282f55e09
        • Jeon C.Y.
        • Lokken R.P.
        • Hu F.B.
        • van Dam R.M.
        Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review.
        Diabetes Care. 2007; 30 (30/3/744 [pii]): 744-752https://doi.org/10.2337/dc06-1842
        • Sofi F.
        • Capalbo A.
        • Cesari F.
        • Abbate R.
        • Gensini G.F.
        Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies.
        Eur J Cardiovasc Prev Rehabil. 2008; 15: 247-257https://doi.org/10.1097/HJR.0b013e3282f232ac
        • Celis-Morales C.A.
        • Perez-Bravo F.
        • Ibanez L.
        • Salas C.
        • Bailey M.E.
        • Gill J.M.
        Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers.
        PLoS ONE. 2012; 7 (PONE-D-12–06438 [pii]): e36345https://doi.org/10.1371/journal.pone.0036345
        • Shephard R.J.
        Limits to the measurement of habitual physical activity by questionnaires.
        Br J Sports Med. 2003; 37: 197-206
        • Blair S.N.
        • Cheng Y.
        • Holder J.S.
        Is physical activity or physical fitness more important in defining health benefits?.
        Med Sci Sports Exerc. 2001; 33: S379-S399
        • Sedentary Behaviour RN
        Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”.
        Appl Physiol Nutr Metab. 2012; 37: 540-542https://doi.org/10.1139/h2012-024
        • Edwardson C.L.
        • Gorely T.
        • Davies M.J.
        • et al.
        Association of sedentary behaviour with metabolic syndrome: a meta-analysis.
        PLoS ONE. 2012; 7 (PONE-D-11–16815 [pii]): e34916https://doi.org/10.1371/journal.pone.0034916
        • Wilmot E.G.
        • Edwardson C.L.
        • Achana F.A.
        • et al.
        Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis.
        Diabetologia. 2012; 55: 2895-2905https://doi.org/10.1007/s00125-012-2677-z
        • Thorp A.A.
        • Owen N.
        • Neuhaus M.
        • Dunstan D.W.
        Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011.
        Am J Prev Med. 2011; 41 (S0749–3797(11)00312-6 [pii]): 207-215https://doi.org/10.1016/j.amepre.2011.05.004
        • Department of Health
        Start active, stay active: a report on physical activity for health from the four home countries' Chief Medical Officers.
        2011: 1-59
        • U.S.Department of Health and Human Services
        2008 physical activity guidelines for Americans.
        2008
        • World Health Organisation
        Global recommendations on physical activity for health.
        2010: 1-58
        • Lee I.M.
        • Shiroma E.J.
        • Lobelo F.
        • Puska P.
        • Blair S.N.
        • Katzmarzyk P.T.
        Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy.
        Lancet. 2012; 380 (S0140–6736(12)61031-9 [pii]): 219-229https://doi.org/10.1016/S0140-6736(12)61031-9
        • Blair S.N.
        Physical inactivity: the biggest public health problem of the 21st century.
        Br J Sports Med. 2009; 43 (43/1/1 [pii]): 1-2
        • Lan T.Y.
        • Chang H.Y.
        • Tai T.Y.
        Relationship between components of leisure physical activity and mortality in Taiwanese older adults.
        Prev Med. 2006; 43 (S0091–7435(06)00137-X [pii]): 36-41https://doi.org/10.1016/j.ypmed.2006.03.016
        • Matthews C.E.
        • Jurj A.L.
        • Shu X.O.
        • et al.
        Influence of exercise, walking, cycling, and overall nonexercise physical activity on mortality in Chinese women.
        Am J Epidemiol. 2007; 165 (kwm088 [pii]): 1343-1350https://doi.org/10.1093/aje/kwm088
        • Villegas R.
        • Shu X.O.
        • Li H.
        • et al.
        Physical activity and the incidence of type 2 diabetes in the Shanghai women's health study.
        Int J Epidemiol. 2006; 35: 1553-1562
        • Wang N.
        • Zhang X.
        • Xiang Y.B.
        • et al.
        Associations of Tai Chi, walking, and jogging with mortality in Chinese men.
        Am J Epidemiol. 2013; (kwt050 [pii])https://doi.org/10.1093/aje/kwt050
        • Rodriguez B.L.
        • Curb J.D.
        • Burchfiel C.M.
        • et al.
        Physical activity and 23-year incidence of coronary heart disease morbidity and mortality among middle-aged men. The Honolulu Heart Program.
        Circulation. 1994; 89: 2540-2544
        • Donahue R.P.
        • Abbott R.D.
        • Reed D.M.
        • Yano K.
        Physical activity and coronary heart disease in middle-aged and elderly men: the Honolulu Heart Program.
        Am J Public Health. 1988; 78: 683-685
        • Hakim A.A.
        • Curb J.D.
        • Petrovitch H.
        • et al.
        Effects of walking on coronary heart disease in elderly men: the Honolulu Heart Program.
        Circulation. 1999; 100: 9-13
        • Abbott R.D.
        • Curb J.D.
        • Rodriguez B.L.
        • et al.
        Age-related changes in risk factor effects on the incidence of thromboembolic and hemorrhagic stroke.
        J Clin Epidemiol. 2003; 56 (S089543560200611X [pii]): 479-486
        • Abbott R.D.
        • Rodriguez B.L.
        • Burchfiel C.M.
        • Curb J.D.
        Physical activity in older middle-aged men and reduced risk of stroke: the Honolulu Heart Program.
        Am J Epidemiol. 1994; 139: 881-893
        • Burchfiel C.M.
        • Sharp D.S.
        • Curb J.D.
        • et al.
        Physical activity and incidence of diabetes: the Honolulu Heart Program.
        Am J Epidemiol. 1995; 141: 360-368
        • Hakim A.A.
        • Petrovitch H.
        • Burchfiel C.M.
        • et al.
        Effects of walking on mortality among nonsmoking retired men.
        N Engl J Med. 1998; 338: 94-99https://doi.org/10.1056/NEJM199801083380204
        • Sato K.K.
        • Hayashi T.
        • Kambe H.
        • et al.
        Walking to work is an independent predictor of incidence of type 2 diabetes in Japanese men: the Kansai Healthcare Study.
        Diabetes Care. 2007; 30 (dc07-0090 [pii]): 2296-2298https://doi.org/10.2337/dc07-0090
        • Okada K.
        • Hayashi T.
        • Tsumura K.
        • Suematsu C.
        • Endo G.
        • Fujii S.
        Leisure-time physical activity at weekends and the risk of type 2 diabetes mellitus in Japanese men: the Osaka Health Survey.
        Diabet Med. 2000; 17: 53-58
        • Nakanishi N.
        • Takatorige T.
        • Suzuki K.
        Daily life activity and risk of developing impaired fasting glucose or type 2 diabetes in middle-aged Japanese men.
        Diabetologia. 2004; 47: 1768-1775
        • Noda H.
        • Iso H.
        • Toyoshima H.
        • et al.
        Walking and sports participation and mortality from coronary heart disease and stroke.
        J Am Coll Cardiol. 2005; 46 (S0735–1097(05)01782-1 [pii]): 1761-1767https://doi.org/10.1016/j.jacc.2005.07.038
        • Inoue M.
        • Iso H.
        • Yamamoto S.
        • et al.
        Daily total physical activity level and premature death in men and women: results from a large-scale population-based cohort study in Japan (JPHC study).
        Ann Epidemiol. 2008; 18 (S1047–2797(08)00063-X [pii]): 522-530https://doi.org/10.1016/j.annepidem.2008.03.008
        • Ottenbacher A.J.
        • Snih S.A.
        • Karmarkar A.
        • et al.
        Routine physical activity and mortality in Mexican Americans aged 75 and older.
        J Am Geriatr Soc. 2012; 60: 1085-1091https://doi.org/10.1111/j.1532-5415.2012.03995.x
        • Folsom A.R.
        • Arnett D.K.
        • Hutchinson R.G.
        • Liao F.
        • Clegg L.X.
        • Cooper L.S.
        Physical activity and incidence of coronary heart disease in middle-aged women and men.
        Med Sci Sports Exerc. 1997; 29: 901-909
        • Bell E.J.
        • Lutsey P.L.
        • Windham B.G.
        • Folsom A.R.
        Physical activity and cardiovascular disease in African Americans in atherosclerosis risk in communities.
        Med Sci Sports Exerc. 2013; 45: 901-907https://doi.org/10.1249/MSS.0b013e31827d87ec
        • Manson J.E.
        • Greenland P.
        • LaCroix A.Z.
        • et al.
        Walking compared with vigorous exercise for the prevention of cardiovascular events in women.
        N Engl J Med. 2002; 347: 716-725
        • Mathieu R.A.
        • Powell-Wiley T.M.
        • Ayers C.R.
        • et al.
        Physical activity participation, health perceptions, and cardiovascular disease mortality in a multiethnic population: the Dallas Heart Study.
        Am Heart J. 2012; 163 (S0002–8703(12)00170-6 [pii]): 1037-1040https://doi.org/10.1016/j.ahj.2012.03.005
        • Gillum R.F.
        • Mussolino M.E.
        • Ingram D.D.
        Physical activity and stroke incidence in women and men. The NHANES I Epidemiologic Follow-up Study.
        Am J Epidemiol. 1996; 143: 860-869
        • Evenson K.R.
        • Rosamond W.D.
        • Cai J.
        • et al.
        Physical activity and ischemic stroke risk. The atherosclerosis risk in communities study.
        Stroke. 1999; 30: 1333-1339
        • Autenrieth C.S.
        • Evenson K.R.
        • Yatsuya H.
        • Shahar E.
        • Baggett C.
        • Rosamond W.D.
        Association between physical activity and risk of stroke subtypes: the atherosclerosis risk in communities study.
        Neuroepidemiology. 2013; 40 (000342151 [pii]): 109-116https://doi.org/10.1159/000342151
        • Gregg E.W.
        • Gerzoff R.B.
        • Caspersen C.J.
        • Williamson D.F.
        • Narayan K.M.
        Relationship of walking to mortality among US adults with diabetes.
        Arch Intern Med. 2003; 163 (163/12/1440 [pii]): 1440-1447https://doi.org/10.1001/archinte.163.12.1440
        • de Munter J.S.
        • Agyemang C.
        • Stronks K.
        • van Valkengoed I.G.
        Association of physical activity, smoking, and alcohol intake with CVD-related hospital discharge in people of European, South Asian, or African descent.
        Eur J Prev Cardiol. 2013; 20 (2047487311434232 [pii]): 80-88https://doi.org/10.1177/2047487311434232
        • Williams E.D.
        • Stamatakis E.
        • Chandola T.
        • Hamer M.
        Physical activity behaviour and coronary heart disease mortality among South Asian people in the UK: an observational longitudinal study.
        Heart. 2011; 97 (hrt.2010.201012 [pii]): 655-659https://doi.org/10.1136/hrt.2010.201012
        • Hsia J.
        • Wu L.
        • Allen C.
        • et al.
        Physical activity and diabetes risk in postmenopausal women.
        Am J Prev Med. 2005; 28: 19-25
        • Steinbrecher A.
        • Erber E.
        • Grandinetti A.
        • Nigg C.
        • Kolonel L.N.
        • Maskarinec G.
        Physical activity and risk of type 2 diabetes among Native Hawaiians, Japanese Americans, and Caucasians: the Multiethnic Cohort.
        J Phys Act Health. 2012; 9 (2010–0209 [pii]): 634-641
        • Fretts A.M.
        • Howard B.V.
        • Kriska A.M.
        • et al.
        Physical activity and incident diabetes in American Indians: the Strong Heart Study.
        Am J Epidemiol. 2009; 170 (kwp181 [pii]): 632-639https://doi.org/10.1093/aje/kwp181
        • Sattar N.
        Revisiting the links between glycaemia, diabetes and cardiovascular disease.
        Diabetologia. 2013; 56: 686-695https://doi.org/10.1007/s00125-012-2817-5
        • Wing R.R.
        • Bolin P.
        • Brancati F.L.
        • et al.
        Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes.
        N Engl J Med. 2013; 369: 145-154https://doi.org/10.1056/NEJMoa1212914
        • Wesche-Thobaben J.A.
        The development and description of the comparison group in the Look AHEAD trial.
        Clin Trials. 2011; 8 (8/3/320 [pii]): 320-329https://doi.org/10.1177/1740774511405858
        • Gregg E.W.
        • Chen H.
        • Wagenknecht L.E.
        • et al.
        Association of an intensive lifestyle intervention with remission of type 2 diabetes.
        J Am Med Assoc. 2012; 308 (1486829 [pii]): 2489-2496https://doi.org/10.1001/jama.2012.67929
        • Jakicic J.M.
        • Egan C.M.
        • Fabricatore A.N.
        • et al.
        Four-year change in cardiorespiratory fitness and influence on glycemic control in adults with type 2 diabetes in a randomized trial: the Look AHEAD Trial.
        Diabetes Care. 2013; 36 (dc12-0712 [pii]): 1297-1303https://doi.org/10.2337/dc12-0712
        • Li G.
        • Zhang P.
        • Wang J.
        • et al.
        The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study.
        Lancet. 2008; 371 (S0140–6736(08)60766-7 [pii]): 1783-1789https://doi.org/10.1016/S0140-6736(08)60766-7
        • Heran B.S.
        • Chen J.M.
        • Ebrahim S.
        • et al.
        Exercise-based cardiac rehabilitation for coronary heart disease.
        Cochrane Database Syst Rev. 2011; : CD001800https://doi.org/10.1002/14651858.CD001800.pub2
        • Lawler P.R.
        • Filion K.B.
        • Eisenberg M.J.
        Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials.
        Am Heart J. 2011; 162 (S0002–8703(11)00559-X [pii]): 571-584https://doi.org/10.1016/j.ahj.2011.07.017
        • Durstine J.L.
        • Grandjean P.W.
        • Davis P.G.
        • Ferguson M.A.
        • Alderson N.L.
        • DuBose K.D.
        Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis.
        Sports Med. 2001; 31: 1033-1062
        • Malkova D.
        • Gill J.M.R.
        Effects of exercise on postprandial lipoprotein metabolism.
        Future Lipidol. 2006; 1: 743-755
        • Al-Shayji I.A.
        • Caslake M.J.
        • Gill J.M.
        Effects of moderate exercise on VLDL and intralipid kinetics in overweight/obese middle-aged men.
        Am J Physiol Endocrinol Metab. 2012; 302 (ajpendo.00498.2011 [pii]): E349-E355https://doi.org/10.1152/ajpendo.00498.2011
        • Maarbjerg S.J.
        • Sylow L.
        • Richter E.A.
        Current understanding of increased insulin sensitivity after exercise - emerging candidates.
        Acta Physiol (Oxf). 2011; 202: 323-335https://doi.org/10.1111/j.1748-1716.2011.02267.x
        • Turcotte L.P.
        • Fisher J.S.
        Skeletal muscle insulin resistance: roles of fatty acid metabolism and exercise.
        Phys Ther. 2008; 88 (ptj.20080018 [pii]): 1279-1296https://doi.org/10.2522/ptj.20080018
        • Green D.J.
        • Maiorana A.
        • O'Driscoll G.
        • Taylor R.
        Effect of exercise training on endothelium-derived nitric oxide function in humans.
        J Physiol. 2004; 561 (jphysiol.2004.068197 [pii]): 1-25https://doi.org/10.1113/jphysiol.2004.068197
        • Szostak J.
        • Laurant P.
        The forgotten face of regular physical exercise: a ‘natural’ anti-atherogenic activity.
        Clin Sci (Lond). 2011; 121 (CS20100520 [pii]): 91-106https://doi.org/10.1042/CS20100520
        • Padilla J.
        • Simmons G.H.
        • Bender S.B.
        • Arce-Esquivel A.A.
        • Whyte J.J.
        • Laughlin M.H.
        Vascular effects of exercise: endothelial adaptations beyond active muscle beds.
        Physiology (Bethesda). 2011; 26 (26/3/132 [pii]): 132-145https://doi.org/10.1152/physiol.00052.2010
        • Whelton S.P.
        • Chin A.
        • Xin X.
        • He J.
        Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials.
        Ann Intern Med. 2002; 136: 493-503
        • Cornelissen V.A.
        • Buys R.
        • Smart N.A.
        Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis.
        J Hypertens. 2013; 31: 639-648https://doi.org/10.1097/HJH.0b013e32835ca964
        • Cornelissen V.A.
        • Smart N.A.
        Exercise training for blood pressure: a systematic review and meta-analysis.
        J Am Heart Assoc. 2013; 2 (2/1/e004473 [pii]): e004473https://doi.org/10.1161/JAHA.112.004473
        • Mathur N.
        • Pedersen B.K.
        Exercise as a mean to control low-grade systemic inflammation.
        Mediators Inflamm. 2008; 2008: 109502https://doi.org/10.1155/2008/109502
        • You T.
        • Arsenis N.C.
        • Disanzo B.L.
        • LaMonte M.J.
        Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms.
        Sports Med. 2013; 43: 243-256https://doi.org/10.1007/s40279-013-0023-3
        • Ryan D.
        Risks and benefits of weight loss: challenges to obesity research.
        Eur Heart J Suppl. 2005; 7: L27-L31
        • Collins G.S.
        • Altman D.G.
        Predicting the 10 year risk of cardiovascular disease in the United Kingdom: independent and external validation of an updated version of QRISK2.
        BMJ. 2012; 344: e4181
        • Lindstrom J.
        • Peltonen M.
        • Eriksson J.G.
        • et al.
        Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS).
        Diabetologia. 2013; 56: 284-293https://doi.org/10.1007/s00125-012-2752-5
        • Knowler W.C.
        • Fowler S.E.
        • Hamman R.F.
        • et al.
        10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study.
        Lancet. 2009; 374 (S0140–6736(09)61457-4 [pii]): 1677-1686https://doi.org/10.1016/S0140-6736(09)61457-4
        • Gong Q.
        • Gregg E.W.
        • Wang J.
        • et al.
        Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: the China Da Qing Diabetes Prevention Outcome Study.
        Diabetologia. 2011; 54: 300-307https://doi.org/10.1007/s00125-010-1948-9
        • Pan X.R.
        • Li G.W.
        • Hu Y.H.
        • et al.
        Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study.
        Diabetes Care. 1997; 20: 537-544
        • Kosaka K.
        • Noda M.
        • Kuzuya T.
        Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males.
        Diabetes Res Clin Pract. 2005; 67 (S0168–8227(04)00178-0 [pii]): 152-162https://doi.org/10.1016/j.diabres.2004.06.010
        • Ramachandran A.
        • Snehalatha C.
        • Mary S.
        • Mukesh B.
        • Bhaskar A.D.
        • Vijay V.
        The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1).
        Diabetologia. 2006; 49: 289-297
        • Knowler W.C.
        • Barrett-Connor E.
        • Fowler S.E.
        • et al.
        Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
        N Engl J Med. 2002; 346: 393-403
        • Penn L.
        • White M.
        • Lindstrom J.
        • et al.
        Importance of weight loss maintenance and risk prediction in the prevention of type 2 diabetes: analysis of European Diabetes Prevention Study RCT.
        PLoS ONE. 2013; 8 (PONE-D-12–30924 [pii]): e57143https://doi.org/10.1371/journal.pone.0057143
        • Tuomilehto J.
        • Lindstrom J.
        • Eriksson J.G.
        • et al.
        Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.
        N Engl J Med. 2001; 344: 1343-1350
        • Mukhopadhyay B.
        • Forouhi N.G.
        • Fisher B.M.
        • Kesson C.M.
        • Sattar N.
        A comparison of glycaemic and metabolic control over time among South Asian and European patients with type 2 diabetes: results from follow-up in a routine diabetes clinic.
        Diabet Med. 2006; 23: 94-98
        • Sproston K.
        • Mindell J.
        The health of minority ethnic groups. vol. 1. 2006
        • International Diabetes Federation
        IDF diabetes atlas.
        International Diabetes Federation, Brussels2009
        • Zimmet P.
        Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted?.
        J Intern Med. 2000; 247 (jim625 [pii]): 301-310
        • McKeigue P.M.
        • Shah B.
        • Marmot M.G.
        Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians.
        Lancet. 1991; 337: 382-386
        • Venkataraman R.
        • Nanda N.C.
        • Baweja G.
        • Parikh N.
        • Bhatia V.
        Prevalence of diabetes mellitus and related conditions in Asian Indians living in the United States.
        Am J Cardiol. 2004; 94 (S0002–9149(04)00976-2 [pii]): 977-980https://doi.org/10.1016/j.amjcard.2004.06.048
        • Kanaya A.M.
        • Wassel C.L.
        • Mathur D.
        • et al.
        Prevalence and correlates of diabetes in South Asian Indians in the United States: findings from the metabolic syndrome and atherosclerosis in South Asians living in America study and the multi-ethnic study of atherosclerosis.
        Metab Syndr Relat Disord. 2010; 8: 157-164https://doi.org/10.1089/met.2009.0062
        • Zhang Q.
        • Wang Y.
        • Huang E.S.
        Changes in racial/ethnic disparities in the prevalence of type 2 diabetes by obesity level among US adults.
        Ethn Health. 2009; 14 (910365654 [pii]): 439-457https://doi.org/10.1080/13557850802699155
        • Mohan V.
        • Mathur P.
        • Deepa R.
        • et al.
        Urban rural differences in prevalence of self-reported diabetes in India–the WHO-ICMR Indian NCD risk factor surveillance.
        Diabetes Res Clin Pract. 2008; 80: 159-168
        • Ramachandran A.
        • Mary S.
        • Yamuna A.
        • Murugesan N.
        • Snehalatha C.
        High prevalence of diabetes and cardiovascular risk factors associated with urbanization in India.
        Diabetes Care. 2008; 31 (dc07-1207 [pii]): 893-898https://doi.org/10.2337/dc07-1207
        • Maskarinec G.
        • Grandinetti A.
        • Matsuura G.
        • et al.
        Diabetes prevalence and body mass index differ by ethnicity: the Multiethnic Cohort.
        Ethn Dis. 2009; 19: 49-55
        • Yu C.H.
        • Zinman B.
        Type 2 diabetes and impaired glucose tolerance in aboriginal populations: a global perspective.
        Diabetes Res Clin Pract. 2007; 78 (S0168–8227(07)00249-5 [pii]): 159-170https://doi.org/10.1016/j.diabres.2007.03.022
        • Valencia M.E.
        • Bennett P.H.
        • Ravussin E.
        • Esparza J.
        • Fox C.
        • Schulz L.O.
        The Pima Indians in Sonora, Mexico.
        Nutr Rev. 1999; 57: S55-S57
        • Schulz L.O.
        • Bennett P.H.
        • Ravussin E.
        • et al.
        Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S.
        Diabetes Care. 2006; 29 (29/8/1866 [pii]): 1866-1871https://doi.org/10.2337/dc06-0138
        • Esparza J.
        • Fox C.
        • Harper I.T.
        • et al.
        Daily energy expenditure in Mexican and USA Pima indians: low physical activity as a possible cause of obesity.
        Int J Obes Relat Metab Disord. 2000; 24: 55-59
        • Baier L.J.
        • Hanson R.L.
        Genetic studies of the etiology of type 2 diabetes in Pima Indians: hunting for pieces to a complicated puzzle.
        Diabetes. 2004; 53: 1181-1186
        • Perez-Bravo F.
        • Carrasco E.
        • Santos J.L.
        • Calvillan M.
        • Larenas G.
        • Albala C.
        Prevalence of type 2 diabetes and obesity in rural Mapuche population from Chile.
        Nutrition. 2001; 17 (S0899900700005505 [pii]): 236-238
        • Perez-Bravo F.
        • Fuentes M.
        • Angel B.
        • et al.
        Lack of association between the fatty acid binding protein 2 (FABP2) polymorphism with obesity and insulin resistance in two aboriginal populations from Chile.
        Acta Diabetol. 2006; 43: 93-98https://doi.org/10.1007/s00592-006-0221-7
        • Larenas G.
        • Arias G.
        • Espinoza O.
        • et al.
        Prevalence of diabetes mellitus in a Mapuche community of Region IX, Chile.
        Rev Med Chil. 1985; 113: 1121-1125
        • Carrasco E.P.
        • Perez F.B.
        • Angel B.B.
        • et al.
        Prevalence of type 2 diabetes and obesity in two Chilean aboriginal populations living in urban zones.
        Rev Med Chil. 2004; 132: 1189-1197
        • Celis-Morales C.A.
        • Perez-Bravo F.
        • Ibanes L.
        • et al.
        Insulin resistance in Chileans of European and Indigenous descent: evidence for an ethnicity x environment interaction.
        PLoS ONE. 2011; 6: e24690
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • Forouhi N.G.
        • Sattar N.
        • Tillin T.
        • McKeigue P.M.
        • Chaturvedi N.
        Do known risk factors explain the higher coronary heart disease mortality in South Asian compared with European men? Prospective follow-up of the Southall and Brent studies, UK.
        Diabetologia. 2006; 49: 2580-2588
        • Gray L.J.
        • Yates T.
        • Davies M.J.
        • et al.
        Defining obesity cut-off points for migrant South Asians.
        PLoS ONE. 2011; 6 (PONE-D-11–06667 [pii]): e26464https://doi.org/10.1371/journal.pone.0026464
        • Chandalia M.
        • Lin P.
        • Seenivasan T.
        • et al.
        Insulin resistance and body fat distribution in South Asian men compared to Caucasian men.
        PLoS ONE. 2007; 2: e812
        • Hall L.M.
        • Moran C.N.
        • Milne G.R.
        • et al.
        Fat oxidation, fitness and skeletal muscle expression of oxidative/lipid metabolism genes in South Asians: implications for insulin resistance?.
        PLoS ONE. 2010; 5: e14197https://doi.org/10.1371/journal.pone.0014197
        • Hall L.M.L.
        • Sattar N.
        • Gill J.M.R.
        Risk of metabolic and vascular disease in South Asians: potential mechanisms for increased insulin resistance.
        Future Lipidology. 2008; 3: 411-424
        • Misra A.
        • Vikram N.K.
        Insulin resistance syndrome (metabolic syndrome) and obesity in Asian Indians: evidence and implications.
        Nutrition. 2004; 20: 482-491
        • Petersen K.F.
        • Dufour S.
        • Feng J.
        • et al.
        Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men.
        Proc Natl Acad Sci U S A. 2006; 103: 18273-18277
        • Yajnik C.S.
        Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries.
        J Nutr. 2004; 134: 205-210
        • Yajnik C.S.
        • Lubree H.G.
        • Rege S.S.
        • et al.
        Adiposity and hyperinsulinemia in Indians are present at birth.
        J Clin Endocrinol Metab. 2002; 87: 5575-5580
        • Yajnik C.S.
        • Fall C.H.
        • Coyaji K.J.
        • et al.
        Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study.
        Int J Obes Relat Metab Disord. 2003; 27: 173-180
        • Ramachandran A.
        • Ma R.C.
        • Snehalatha C.
        Diabetes in Asia.
        Lancet. 2010; 375 (S0140–6736(09)60937-5 [pii]): 408-418https://doi.org/10.1016/S0140-6736(09)60937-5
        • Gujral U.P.
        • Pradeepa R.
        • Weber M.B.
        • Narayan K.M.
        • Mohan V.
        Type 2 diabetes in South Asians: similarities and differences with white Caucasian and other populations.
        Ann N Y Acad Sci. 2013; 1281: 51-63https://doi.org/10.1111/j.1749-6632.2012.06838.x
        • Fischbacher C.M.
        • Hunt S.
        • Alexander L.
        How physically active are South Asians in the United Kingdom? A literature review.
        J Public Health (Oxf). 2004; 26 (26/3/250 [pii]): 250-258https://doi.org/10.1093/pubmed/fdh158
        • Hayes L.
        • White M.
        • Unwin N.
        • et al.
        Patterns of physical activity and relationship with risk markers for cardiovascular disease and diabetes in Indian, Pakistani, Bangladeshi and European adults in a UK population.
        J Public Health Med. 2002; 24: 170-178
        • Yates T.
        • Davies M.J.
        • Gray L.J.
        • et al.
        Levels of physical activity and relationship with markers of diabetes and cardiovascular disease risk in 5474 white European and South Asian adults screened for type 2 diabetes.
        Prev Med. 2010; (S0091–7435(10)00238-0 [pii])https://doi.org/10.1016/j.ypmed.2010.06.011
        • Williams E.D.
        • Stamatakis E.
        • Chandola T.
        • Hamer M.
        Assessment of physical activity levels in South Asians in the UK: findings from the Health Survey for England.
        J Epidemiol Community Health. 2011; 65 (jech.2009.102509 [pii]): 517-521https://doi.org/10.1136/jech.2009.102509
        • Ghouri N.
        • Purves D.
        • McConnachie A.
        • Wilson J.
        • Gill J.M.R.
        • Sattar N.
        Lower cardiorespiratory fitness contributes to increased insulin resistance and fasting glycaemia in middle-aged South Asian compared to European men living in the UK.
        Diabetologia. 2013; https://doi.org/10.1007/s00125-013-2969-y
        • Forouhi N.G.
        • Jenkinson G.
        • Thomas E.L.
        • et al.
        Relation of triglyceride stores in skeletal muscle cells to central obesity and insulin sensitivity in European and South Asian men.
        Diabetologia. 1999; 42: 932-935
        • Berntsen S.
        • Richardsen K.R.
        • Morkrid K.
        • Sletner L.
        • Birkeland K.I.
        • Jenum A.K.
        Objectively recorded physical activity in early pregnancy: a multiethnic population-based study.
        Scand J Med Sci Sports. 2012; https://doi.org/10.1111/sms.12034
        • Duncan M.J.
        • Birch S.
        • Al-Nakeeb Y.
        • Nevill A.M.
        Ambulatory physical activity levels of white and South Asian children in Central England.
        Acta Paediatr. 2012; 101: e156-e162https://doi.org/10.1111/j.1651-2227.2011.02566.x
        • Davey G.J.G.
        • Roberts J.D.
        • Patel S.
        • et al.
        Effects of exercise on insulin resistance in South Asians and Europeans.
        Journal of Exercise Physiology. 2000; 3: 6-11
        • Hardy C.P.
        • Eston R.G.
        Aerobic fitness of Anglo-Saxon and Indian students.
        Br J Sports Med. 1985; 19: 217-218
        • Ceaser T.G.
        • Fitzhugh E.C.
        • Thompson D.L.
        • Bassett Jr., D.R.
        Association of physical activity, fitness, and race: NHANES 1999–2004.
        Med Sci Sports Exerc. 2013; 45: 286-293https://doi.org/10.1249/MSS.0b013e318271689e
        • Bouchard C.
        • Daw E.W.
        • Rice T.
        • et al.
        Familial resemblance for VO2max in the sedentary state: the HERITAGE family study.
        Med Sci Sports Exerc. 1998; 30: 252-258
        • Bouchard C.
        • Lesage R.
        • Lortie G.
        • et al.
        Aerobic performance in brothers, dizygotic and monozygotic twins.
        Med Sci Sports Exerc. 1986; 18: 639-646
        • Larsen F.J.
        • Anderson M.
        • Ekblom B.
        • Nystrom T.
        Cardiorespiratory fitness predicts insulin action and secretion in healthy individuals.
        Metabolism. 2012; 61 (S0026–0495(11)00139-9 [pii]): 12-16https://doi.org/10.1016/j.metabol.2011.05.010
        • Gan S.K.
        • Kriketos A.D.
        • Ellis B.A.
        • Thompson C.H.
        • Kraegen E.W.
        • Chisholm D.J.
        Changes in aerobic capacity and visceral fat but not myocyte lipid levels predict increased insulin action after exercise in overweight and obese men.
        Diabetes Care. 2003; 26: 1706-1713
        • Lynch J.
        • Helmrich S.P.
        • Lakka T.A.
        • et al.
        Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men.
        Arch Intern Med. 1996; 156: 1307-1314
        • Wei M.
        • Gibbons L.W.
        • Mitchell T.L.
        • Kampert J.B.
        • Lee C.D.
        • Blair S.N.
        The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men.
        Ann Intern Med. 1999; 130: 89-96
        • Wisloff U.
        • Najjar S.M.
        • Ellingsen O.
        • et al.
        Cardiovascular risk factors emerge after artificial selection for low aerobic capacity.
        Science. 2005; 307: 418-420
        • Holloszy J.O.
        • Coyle E.F.
        Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.
        J Appl Physiol. 1984; 56: 831-838
        • Church T.
        The low-fitness phenotype as a risk factor: more than just being sedentary?.
        Obesity (Silver Spring). 2009; 17 (oby2009387 [pii]): S39-S42https://doi.org/10.1038/oby.2009.387
        • Misra A.
        • Chowbey P.
        • Makkar B.M.
        • et al.
        Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management.
        J Assoc Physicians India. 2009; 57: 163-170
        • Kumar S.
        • Hanif W.
        • Zaman M.J.
        • Sattar N.
        • Patel K.
        • Khunti K.
        Lower thresholds for diagnosis and management of obesity in British South Asians.
        Int J Clin Pract. 2011; 65: 375-385
        • Razak F.
        • Anand S.S.
        • Shannon H.
        • et al.
        Defining obesity cut points in a multiethnic population.
        Circulation. 2007; 115: 2111-2118
        • Misra A.
        • Nigam P.
        • Hills A.P.
        • et al.
        Consensus physical activity guidelines for Asian Indians.
        Diabetes Technol Ther. 2012; 14: 83-98https://doi.org/10.1089/dia.2011.0111
        • Waidyatilaka I.
        • Lanerolle P.
        • Wickremasinghe R.
        • Atukorala S.
        • Somasundaram N.
        • de S.A.
        Sedentary behaviour and physical activity in South Asian women: time to review current recommendations?.
        PLoS ONE. 2013; 8 (PONE-D-12–33340 [pii]): e58328https://doi.org/10.1371/journal.pone.0058328
        • Troiano R.P.
        • Berrigan D.
        • Dodd K.W.
        • Masse L.C.
        • Tilert T.
        • McDowell M.
        Physical activity in the United States measured by accelerometer.
        Med Sci Sports Exerc. 2008; 40: 181-188https://doi.org/10.1249/mss.0b013e31815a51b3
        • Celis-Morales C.A.
        • Ghouri N.
        • Bailey M.E.S.
        • Sattar N.
        • Gill J.M.R.
        Should physical activity recommendations be ethnicity-specific? Evidence from a cross-sectional study of South Asian and European men.
        PLoS ONE. 2013; 8: e82568https://doi.org/10.1371/journal.pone.0082568
        • Matsuda M.
        • DeFronzo R.A.
        Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.
        Diabetes Care. 1999; 22: 1462-1470