Advertisement

Molecular and functional characterization of LRP1 promoter polymorphism c.1-25 C>G (rs138854007)

  • R. Aledo
    Affiliations
    Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Autonomous University of Barcelona, Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain
    Search for articles by this author
  • P. Costales
    Affiliations
    Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Autonomous University of Barcelona, Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain
    Search for articles by this author
  • C. Ciudad
    Affiliations
    Biochemistry and Molecular Biology Department, School of Pharmacy, IBUB, University of Barcelona, Barcelona, Spain
    Search for articles by this author
  • V. Noé
    Affiliations
    Biochemistry and Molecular Biology Department, School of Pharmacy, IBUB, University of Barcelona, Barcelona, Spain
    Search for articles by this author
  • V. Llorente-Cortes
    Correspondence
    Corresponding author. Tel.: +34 935565888; fax: +34 935565559.
    Affiliations
    Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Autonomous University of Barcelona, Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain
    Search for articles by this author
  • L. Badimon
    Affiliations
    Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Autonomous University of Barcelona, Sant Antoni Mª Claret, 167, 08025 Barcelona, Spain
    Search for articles by this author

      Highlights

      • c.1-25C>G polymorphism prevents SREBP-2 displacement and favours Sp1/Sp3 binding.
      • SREBP-2 overexpression interferes with AngII-induced Sp1/Sp3 and LRP1 overexpression.
      • c.1-25C>G determines a diminished response of LRP1 promoter to agLDL and an exacerbated response to AngII.

      Abstract

      The transcription of the Low-density lipoprotein receptor-related protein (LRP1) is upregulated by aggregated LDL (agLDL) and angiotensin II (AngII) in human vascular smooth muscle cells (hVSMC). The polymorphism c.1-25C>G creates a new GC-box in the LRP1 promoter recognized by Sp1/Sp3 transcription factors. The aims of this study were 1) to evaluate the impact of c.1-25C>G polymorphism on LRP1 transcriptional activity and expression, and 2) to examine the response of c.1-25C>G LRP1 promoter to LDL and AngII.
      EMSA and Luciferase assays in HeLa cells showed that -25G promoter has enhanced basal transcriptional activity and specific Sp1/Sp3 binding. hVSMC with GG genotype (GG-hVSMC) had higher LRP1 mRNA and protein levels, respectively than CC genotype (CC-hVSMC). EMSA assays showed that the polymorphism determines scarce amount of SRE-B/SREBP-2 complex formation and the failure of agLDL to further reduce these SRE-B/SREBP-2 complexes. Taken together, these results suggest that c.1-25C>G, by difficulting SREBP-2 binding, prevents SREBP-2 displacement required for LRP1 promoter response to LDL. In contrast, c.1-25C>G strongly favours Sp1/Sp3 binding and AngII-induced activity in Sp1/Sp3 dependent manner in GG-hVSMC. This increase is functionally translated into a higher capacity of GG-hVSMC to become foam cells from agLDL in presence of AngII. These results suggest that c.1-25C>G determines a lack of response to agLDL and an exacerbated response to AngII. It is thus conceivable that the presence of the polymorphism would be easily translated to vascular alterations in the presence of the pro-hypertensive autacoid, AngII.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Herz J.
        • Hamann U.
        • Rogne S.
        • Myklebost O.
        • Gausepohl H.
        • Stanley K.K.
        Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor.
        EMBO J. 1988; 7: 4119
        • Biessen E.A.
        • van Teijlingen M.
        • Vietsch H.
        • et al.
        Antagonists of the mannose receptor and the LDL receptor-related protein dramatically delay the clearance of tissue plasminogen activator.
        Circulation. 1997; 95: 46
        • Mikhailenko I.
        • Kounnas M.Z.
        • Strickland D.K.
        Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell-surface proteoglycans.
        J Biol Chem. 1995; 270: 9543
        • Willnow T.E.
        • Goldstein J.L.
        • Orth K.
        • Brown M.S.
        • Herz J.
        Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance.
        J Biol Chem. 1992; 267: 26172
        • Strickland D.K.
        • Ranganathan S.
        Diverse role of LDL receptor-related protein in the clearance of proteases and in signallilng.
        J Thrombosis Haemostasis. 2003; 1: 1663
        • Llorente-Cortes V.
        • Badimon L.
        LDL receptor-related protein and the vascular wall: implications for atherothrombosis.
        Arterioscler Thromb Vasc Biol. 2005; 25: 497
        • Luoma J.
        • Hiltunen T.
        • Särkioja T.
        • et al.
        Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.
        J Clin Invest. 1994; 93: 2014
        • Llorente-Cortes V.
        • Otero-Viñas M.
        • Berrozpe M.
        • Badimon L.
        Intracellular lipid accumulation, low-density lipoprotein receptor-related protein expression, and cell survival in vascular smooth muscle cells derived from normal and atherosclerotic human coronaries.
        Eur J Clin Invest. 2004; 34: 182
        • Handschug K.
        • Schulz S.
        • Schnurer C.
        • et al.
        Low-density lipoprotein receptor-related protein in atherosclerosis development: up-regulation of gene expression in patients with coronary obstruction.
        J Mol Med. 1998; 76: 596
        • Schulz S.
        • Schagdarsurengin U.
        • Greiser P.
        • et al.
        The LDL receptor-related protein (LRP1/A2MR) and coronary atherosclerosis–novel genomic variants and functional consequences.
        Hum Mutat. 2002; 20: 404
        • Llorente-Cortés V.
        • Otero-Viñas M.
        • Camino-López S.
        • Costales P.
        • Badimon L.
        Cholesteryl esters of aggregated LDL are internalized by selective uptake in human vascular smooth muscle cells.
        Arterioscler Thromb Vasc Biol. 2006; 26: 117
        • Llorente-Cortés V.
        • Otero-Viñas M.
        • Camino-Lopez S.
        • Llampayas O.
        • Badimon L.
        Aggregated low density lipoprotein uptake induces membrane tissue factor procaogulant activity and microparticle release in human vascular smooth muscle cells.
        Circulation. 2004; 110: 452
        • Llorente-Cortés V.
        • Otero-Viñas M.
        • Hurt-Camejo E.
        • Martínez-González J.
        • Badimon L.
        Human coronary smooth muscle cells internalize versican-modified LDL through LDL receptor-related protein and LDL receptors.
        Arterioscler Thromb Vasc Biol. 2002; 22: 387
        • Sendra J.
        • Llorente-Cortés
        • Costales P.
        • Huesca-Gómez C.
        • Badimon L.
        Angiotensin II upregulates LDL receptor-related protein (LRP1) expression in the vascular wall: a new pro-atherogenic mechanism of hypertension.
        Cardiovasc Res. 2008; 78: 581
        • Boucher P.
        • Gotthardt M.
        • Li W.P.
        • Anderson R.G.
        • Herz J.
        LRP: role in vascular wall integrity and protection from atherosclerosis.
        Science. 2003; 300: 329
        • Basford J.E.
        • Moore Z.W.
        • Zhou L.
        • Herz J.
        • Hui D.Y.
        Smooth muscle LDL receptor-related protein-1 inactivation reduces vascular reactivity and promotes injury-induced neointima formation.
        Arterioscler Thromb Vasc Biol. 2009; 29: 1772
        • Overton C.D.
        • Yancey P.G.
        • Major A.S.
        • Linton M.F.
        • Fazio S.
        Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse.
        Circ Res. 2007; 100: 670
        • Yancey P.G.
        • Ding Y.
        • Fan D.
        • et al.
        Low-density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent.
        Circulation. 2011; 124: 454
        • Gaultier A.
        • Arandjelovic S.
        • Niessen S.
        • et al.
        Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor.
        Blood. 2008; 111: 5316
        • Boucher P.
        • Liu P.
        • Gotthardt M.
        • Hiesberger T.
        • Anderson R.G.
        • Herz J.
        Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low density lipoprotein receptor-related protein in caveolae.
        J Biol Chem. 2002; 277: 15507
        • Loukinova E.
        • Ranganathan S.
        • Kuznetsov S.
        • et al.
        Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function between LRP and the PDGF.
        J Biol Chem. 2002; 277: 15499
        • Llorente-Cortes V.
        • Costales P.
        • Bernues J.
        • Camino-López S.
        • Badimon L.
        Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription.
        J Mol Biol. 2006; 359: 950
        • Costales P.
        • Aledo R.
        • Vérnia S.
        • et al.
        Selective role of sterol regulatory element binding protein isoforms in aggregated LDL-induced vascular low density lipoprotein receptor-related protein-1 expression.
        Atherosclerosis. 2010; 213: 458
        • Gaeta B.A.
        • Borthwick I.
        • Stanley K.
        The 5'flanking region of the α2MR/LRP gene contains an enhancer-like cluster of Sp1 binding sites.
        Biochim Biophys Acta. 1994; 1219: 307
        • Ray R.
        • Snyder R.C.
        • Thomas S.
        • Koller C.A.
        • Miller D.M.
        Mithramycin blocks protein binding and function of the SV40 early promoter.
        J Clin Invest. 1989; 83: 2003
        • Aledo R.
        • Alonso R.
        • Mata P.
        • Llorente-Cortés V.
        • Padró T.
        • Badimon L.
        LRP1 gene polymorphisms are associated with premature risk of cardiovascular disease in patients with familial hypercholesterolemia.
        Rev Esp Cardiol. 2012; 65: 807
        • Llorente-Cortés V.
        • Otero-Viñas M.
        • Sánchez S.
        • Rodríguez C.
        • Badimon L.
        Low-density lipoprotein upregulates low-density lipoprotein receptor-related protein expression in vascular smooth muscle cells: possible involvement of sterol regulatory element binding protein-2-dependent mechanism.
        Circulation. 2002; 106: 3104
        • Llorente-Cortés V.
        • Royo T.
        • Otero-Viñas M.
        • Berrozpe M.
        • Badimon L.
        Sterol regulatory element binding proteins downregulate LDL receptor-related protein (LRP1) expression and LRP1-mediated aggregated LDL uptake by human macrophages.
        Cardiovasc Res. 2007; 74: 526
        • Grohé C.
        • Kahlert S.
        • Löbbert K.
        • et al.
        Angiotensin converting enzyme inhibition modulates cardiac fibroblast growth.
        J Hypertens. 1998; 16: 377
        • Motojima M.
        • Ando T.
        • Yoshioka T.
        Sp1-like activity mediates angiotensin-II-induced plasminogen-activator inhibitor type-1 (PAI-1) gene expression in mesangial cells.
        Biochem J. 2000; 349: 435
        • Tan N.Y.
        • Khachigian L.M.
        Sp1 phosphorylation and its regulation of gene transcription.
        Mol Cell Biol. 2009; 29: 2483
        • Herz J.
        • Kowal R.C.
        • Ho Y.K.
        • Brown M.S.
        • Goldstein J.L.
        Low density receptor related protein 1 mediates endocytosis of monoclonal antibodies in cultured cells and rabbit liver.
        J Biol Chem. 1990; 265: 21355
        • Descamps O.
        • Bilheimer D.
        • Herz J.
        Insulin stimulates receptor-mediated uptake of apoE-enriched lipoproteins and activated alpha 2-macroglobulin in adipocytes.
        J Biol Chem. 1993; 268: 974
        • Liu Q.
        • Zhang J.
        • Zerbinatti C.
        • et al.
        Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.
        PLoS Biol. 2011; 9: e1000575