Relationships among protein tyrosine phosphatase 1B, angiotensin II, and insulin-mediated aortic responses in type 2 diabetic Goto–Kakizaki rats


      • Insulin-mediated relaxation was impaired in aortas from type 2 diabetic Goto–Kakizaki rats in the chronic stage.
      • Membrane-associated PTP1B was increased in diabetic aortas.
      • The activation of angiotensin II signaling interferes with the insulin-mediated eNOS/NO signaling via PTP1B activation.
      • Angiotensin II increased membrane expression of PTP1B.
      • Membrane-associated PTP1B plays a key role in the development of endothelial dysfunction in type 2 diabetes.



      We investigated the relationships among protein tyrosine phosphatase 1B (PTP1B), angiotensin II (Ang II), and insulin signaling in the presence of endothelial dysfunction in type 2 diabetic Goto–Kakizaki (GK) rat aortas.

      Methods and results

      Aortas isolated from GK or control Wistar rats were examined in the presence or absence of Ang II with or without a selective antagonist of the Ang II type 1 (AT1) receptor or a PTP1B inhibitor to evaluate vascular functional and molecular mechanisms, such as insulin-induced relaxation, nitric oxide (NO) production, phosphorylation of insulin receptor substrate (IRS)-1, endothelial NO synthase (eNOS), and phosphorylation, and the subcellular localization of PTP1B. GK aortas exhibited reductions of: 1) insulin-induced relaxation, 2) NO production, 3) Ser1177-p-eNOS, and 4) Tyr612-p-IRS-1. Pre-incubation with a PTP1B inhibitor normalized these reductions. In Wistar aortas, the four above-mentioned parameters were reduced by Ang II, but were completely inhibited by co-treatment with the PTP1B inhibitor. The membrane expression of PTP1B was greater in GK than in Wistar aortas, and it was increased by Ang II in Wistar rats. The membrane PTP1B expression in the presence of insulin + Ang II was reduced by the PTP1B inhibitor or AT1-receptor antagonist.


      These results suggest that the membrane PTP1B suppressed insulin-mediated aortic relaxation, and this was due to the Ang II-AT1-receptor signaling pathway. The inhibition of PTP1B warrants further investigation as a potential therapeutic target for endothelial dysfunction in type 2 diabetes.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Cersosimo E.
        • DeFronzo R.A.
        Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases.
        Diabetes Metab Res Rev. 2006; 22: 423-436
        • The Action to Control Cardiovascular Risk in Diabetes Study Group
        Effects of intensive glucose lowering in type 2 diabetes.
        N Engl J Med. 2008; 358: 2545-2559
        • The VADT Investigators
        Glucose control and vascular complications in Veterans with type 2 diabetes.
        N Engl J Med. 2009; 360: 129-139
        • Goto Y.
        • Kakizaki M.
        • Masaki N.
        Production of spontaneously diabetic rats by repetition of selective breeding.
        Tohoku J Exp Med. 1976; 119: 85-90
        • Nemoto S.
        • Kobayashi T.
        • Taguchi K.
        • Matsumoto T.
        • Kamata K.
        Losartan improves aortic endothelium-dependent relaxation via proline-rich tyrosine kinase 2/Src/Akt pathway in type 2 diabetic Goto-Kakizaki rats.
        Am J Physiol Heart Circ Physiol. 2011; 301: H2383-H2394
        • Kobayashi T.
        • Nemoto S.
        • Ishida K.
        • Taguchi K.
        • Matsumoto T.
        • Kamata K.
        Involvement of CaM kinase II in the impairment of endothelial function and eNOS activity in aortas of type 2 diabetic rats.
        Clin Sci (Lond). 2012; 123: 375-386
        • Bitar M.S.
        • Wahid S.
        • Mustafa S.
        • Al-Saleh E.
        • Dhaunsi G.S.
        • Al-Mulla F.
        Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
        Eur J Pharmacol. 2005; 511: 53-64
        • Gupte S.
        • Labinskyy N.
        • Gupte R.
        • Csiszar A.
        • Ungvari Z.
        • Edwards J.G.
        Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK) rats as a model of nonobese NIDDM.
        PLos One. 2010; 5: e11800
        • Movassat J.
        • Saulnier C.
        • Serradas P.
        • Portha B.
        Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat.
        Diabetologia. 1997; 40: 916-925
        • Schernthaner G.
        • Schwarzer C.
        • Kuzmits R.
        • Muller M.M.
        • Klemen U.
        • Freyler H.
        Increased angiotensin-converting enzyme activities in diabetes mellitus: analysis of diabetes type, state of metabolic control and occurrence of diabetic vascular disease.
        J Clin Pathol. 1984; 37: 307-312
        • Jost-Vu E.
        • Horton R.
        • Antonipillai I.
        Altered regulation of renin secretion by insulin-like growth factors and angiotensin II in diabetic rats.
        Diabetes. 1992; 41: 1100-1105
        • Kobayashi T.
        • Nogami T.
        • Taguchi K.
        • Matsumoto T.
        • Kamata K.
        Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK.
        Br J Pharmacol. 2008; 155: 974-983
        • Yip S.C.
        • Saha S.
        • Chernoff J.
        PTP1B: a double agent in metabolism and oncogenesis.
        Trends Biochem Sci. 2010; 35: 442-449
        • Kennedy B.P.
        • Ramachandran C.
        Protein tyrosine phosphatase-1B in diabetes.
        Biochem Pharmacol. 2000; 60: 877-883
        • Tonks N.K.
        • Diltz C.D.
        • Fischer E.H.
        Purification of the major protein-tyrosine-phosphatases of human placenta.
        J Biol Chem. 1988; 263: 6722-6730
        • Deem T.L.
        • Abdala-Valencia H.
        • Cook-Mills J.M.
        VCAM-1 activation of endothelial cell protein tyrosine phosphatase 1B.
        J Immunol. 2007; 178: 3865-3873
        • Ketsawatsomkron P.
        • Stepp D.W.
        • Fulton D.J.
        • Marrero M.B.
        Molecular mechanism of angiotensin II-induced insulin resistance in aortic vascular smooth muscle cells: roles of protein tyrosine phosphatase-1B.
        Vasc Pharmacol. 2010; 53: 160-168
        • Sreejayan N.
        • Lin Y.
        • Hassid A.
        NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B mediated mechanism.
        Arterioscler Thromb Vasc Biol. 2002; 22: 1086-1092
        • Tao J.
        • Malbon C.C.
        • Wang H.Y.
        Insulin stimulates tyrosine phosphorylation and inactivation of protein-tyrosine phosphatase 1B in vivo.
        J Biol Chem. 2001; 276: 29520-29525
        • Ali M.I.
        • Ketsawatsomkron P.
        • Belin de Chantemele E.J.
        • et al.
        Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone.
        Circ Res. 2009; 105: 1013-1022
        • Belin de Chantemèle E.J.
        • Muta K.
        • Mintz J.
        • et al.
        Protein tyrosine phosphatase 1B, a major regulator of leptin-mediated control of cardiovascular function.
        Circulation. 2009; 120: 753-763
        • Kobayashi T.
        • Taguchi K.
        • Nemoto S.
        • Nogami T.
        • Matsumoto T.
        • Kamata K.
        Activation of the PDK-1/Akt/eNOS pathway involved in aortic endothelial function differs between hyperinsulinemic and insulin-deficient diabetic rats.
        Am J Physiol Heart Circ Physiol. 2009; 297: H1767-H1775
        • Yu Q.
        • Gao F.
        • Ma X.L.
        Insulin says NO to cardiovascular disease.
        Cardiovasc Res. 2011; 89: 516-524
        • Moeslein F.M.
        • Myers M.P.
        • Landreth G.E.
        The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B.
        J Biol Chem. 1999; 274: 26697-26704
        • Ravichandran L.V.
        • Chen H.
        • Li Y.
        • Quon M.J.
        Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor.
        Mol Endocrinol. 2001; 15: 1768-1780
        • Andrade Ferreira I.
        • Akkerman J.W.
        IRS-1 and vascular complications in diabetes mellitus.
        Vitam Horm. 2005; 70: 25-67
        • Taguchi K.
        • Kobayashi T.
        • Takenouchi Y.
        • Matsumoto T.
        • Kamata K.
        Angiotensin II causes endothelial dysfunction via the GRK2/Akt/eNOS pathway in aortas from a murine type 2 diabetic model.
        Pharmacol Res. 2011; 64: 535-546
        • Oelze M.
        • Mollnau H.
        • Hoffmann N.
        • et al.
        Vasodilator-stimulated phosphoprotein serine239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction.
        Circ Res. 2010; 87: 999-1005
        • Frangioni J.V.
        • Beahm P.H.
        • Shifrin V.
        • Jost C.A.
        • Neel B.G.
        The nontransmembrane tyrosine phosphatase PTP1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence.
        Cell. 1992; 68: 545-560
        • Gomez E.
        • Vercauteren M.
        • Kurtz B.
        • et al.
        Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B.
        J Mol Cell Cardiol. 2012; 52: 1257-1264
        • Vercauteren M.
        • Remy E.
        • Devaux C.
        • et al.
        Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure.
        Circulation. 2006; 114: 2498-2507
        • Rafikov R.
        • Fonseca F.V.
        • Kumar S.
        • et al.
        eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity.
        J Endocrinol. 2011; 210: 271-284
        • Andreozzi F.
        • Laratta E.
        • Sciacqua A.
        • Perticone F.
        • Sesti G.
        Angiotensin II impairs the insulin signalling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells.
        Circ Res. 2004; 94: 1211-1218
        • Esposito D.L.
        • Li Y.
        • Cama A.
        • Quon M.J.
        Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells.
        Endocrinology. 2001; 142: 2833-2840
        • Bandyopadhyay D.
        • Kusari A.
        • Kenner K.A.
        • et al.
        Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin.
        J Biol Chem. 1997; 272: 1639-1645
        • Maegawa H.
        • Ide R.
        • Hasegawa M.
        • et al.
        Thiazolidine derivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities.
        J Biol Chem. 1995; 270: 7724-7730
        • MacKenzie A.
        Endothelium-derived vasoactive agents, AT1 receptors and inflammation.
        Pharmacol Ther. 2011; 131: 187-203
        • Wei Y.
        • Sowers J.R.
        • Nistala R.
        • et al.
        Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells.
        J Biol Chem. 2006; 281: 35137-35146
        • Taheripak G.
        • Bakhtiyari S.
        • Rajabibazl M.
        • Pasalar P.
        • Meshkani R.
        Protein tyrosine phosphatase 1B (PTP1B) inhibition ameliorates palmitate-induced mitochondrial dysfunctiona and apoptosis in skeletal muscle cells.
        Free Radic Biol Med. 2013; 65: 1435-1446
        • Korbecki J.
        • Baranowska-Bosiacka I.
        • Gutowsk I.
        • Chlubek D.
        The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid.
        J Physiol Pharmacol. 2013; 64: 409-421
        • Bogeski I.
        • Bozem M.
        • Sternfeld L.
        • Hofer H.W.
        • Schulz I.
        Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2+ influx following store depletion in HEK293 cells.
        Cell Calcium. 2006; 40: 1-10
        • Phillips A.O.
        • Baboolal K.
        • Riley S.
        • et al.
        Association of prolonged hyperglycemia with glomerular hypertrophy and renal basement membrane thickening in the Goto Kakizaki model of non-insulin-dependent diabetes mellitus.
        Am J Kidney Dis. 2001; 37: 400-410
        • Janssen U.
        • Vassiliadou A.
        • Riley S.G.
        • Phillips A.O.
        • Floege J.
        The quest for a model of type II diabetes with nephropathy: the Goto Kakizaki rat.
        J Nephrol. 2004; 17: 769-773