Serum coenzyme Q10 and risk of disabling dementia: The Circulatory Risk in Communities Study (CIRCS)


      Objective: To examine whether coenzyme Q10, a potent antioxidant, is associated with risk of dementia, which has not yet been elucidated. Approach and results: We performed a case–control study nested in a community-based cohort of approximately 6000 Japanese aged 40–69 years at baseline (1984–1994). Serum coenzyme Q10 was measured in 65 incident cases of disabling dementia with dementia-related behavioral disturbance or cognitive impairment incident between 1999 and 2004, and in 130 age-, sex- and baseline year-matched controls. Serum coenzyme Q10 was inversely associated with dementia: the multivariate odds ratios (95% confidence intervals) were 0.68 (0.26–1.78), 0.92 (0.33–2.56), and 0.23 (0.06–0.86) for individuals with the second, third, and highest quartiles of coenzyme Q10, respectively, as compared with the lowest quartile (P for trend = 0.05). A similar association was found for the coenzyme Q10/total cholesterol ratio: the respective ORs were 0.67 (0.25–1.78), 0.73 (0.28–1.92), and 0.21 (0.05–0.90) (P for trend = 0.04). Conclusions: Serum coenzyme Q10 levels were inversely associated with risk of disabling dementia.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Block G.
        • Jensen C.D.
        • Norkus E.P.
        • Dalvi T.B.
        • Wong L.G.
        • McManus J.F.
        • Hudes M.L.
        Usage patterns, health, and nutritional status of long-term multiple dietary supplement users: a cross-sectional study.
        Nutr. J. 2007; 6: 30
        • Shults C.W.
        • Oakes D.
        • Kieburtz K.
        • Beal M.F.
        • Haas R.
        • Plumb S.
        • Juncos J.L.
        • Nutt J.
        • Shoulson I.
        • Carter J.
        • Kompoliti K.
        • Perlmutter J.S.
        • Reich S.
        • Stern M.
        • Watts R.L.
        • Kurlan R.
        • Molho E.
        • Harrison M.
        • Lew M.
        Effects of coenzyme Q10 in early parkinson disease: evidence of slowing of the functional decline.
        Arch. Neurol. 2002; 59: 1541-1550
        • Feigin A.
        • Kieburtz K.
        • Como P.
        • Hickey C.
        • Claude K.
        • Abwender D.
        • Zimmerman C.
        • Steinberg K.
        • Shoulson I.
        Assessment of coenzyme Q10 tolerability in huntington's disease.
        Mov. Disord. 1996; 11: 321-323
        • Lodi R.
        • Rajagopalan B.
        • Bradley J.L.
        • Taylor D.J.
        • Crilley J.G.
        • Hart P.E.
        • Blamire A.M.
        • Manners D.
        • Styles P.
        • Schapira A.H.
        • Cooper J.M.
        Mitochondrial dysfunction in friedreich's ataxia: from pathogenesis to treatment perspectives.
        Free Radic. Res. 2002; 36: 461-466
        • Cooper J.M.
        • Schapira A.H.
        Friedreich's ataxia: disease mechanisms, antioxidant and coenzyme Q10 therapy.
        Biofactors. 2003; 18: 163-171
        • Rosenfeldt F.
        • Hilton D.
        • Pepe S.
        • Krum H.
        Systematic review of effect of coenzyme Q_10 in physical exercise, hypertension and heart failure.
        Biofactors. 2003; 18: 91-100
        • Burke B.
        • Neuenschwander R.
        • Olson R.
        Randomized, double-blind, placebo-controlled trial of coenzyme q10 in isolated systolic hypertension.
        South Med. J. 2001; 94: 1112-1117
        • Ishrat T.
        • Khan M.B.
        • Hoda M.N.
        • Yousuf S.
        • Ahmad M.
        • Ansari M.A.
        • Ahmad A.S.
        • Islam F.
        Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats.
        Behav. Brain Res. 2006; 171: 9-16
        • Yang X.
        • Yang Y.
        • Li G.
        • Wang J.
        • Yang E.S.
        Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with alzheimer presenilin 1 mutation.
        J. Mol. Neurosci. 2008; 34: 165-171
        • Li G.
        • Jack C.R.
        • Yang X.F.
        • Yang E.S.
        Diet supplement CoQ10 delays brain atrophy in aged transgenic mice with mutations in the amyloid precursor protein: an in vivo volume mri study.
        Biofactors. 2008; 32: 169-178
        • Dumont M.
        • Kipiani K.
        • Yu F.
        • Wille E.
        • Katz M.
        • Calingasan N.Y.
        • Gouras G.K.
        • Lin M.T.
        • Beal M.F.
        Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of alzheimer's disease.
        J. Alzheimers Dis. 2011; 27: 211-223
        • Galasko D.R.
        • Peskind E.
        • Clark C.M.
        • Quinn J.F.
        • Ringman J.M.
        • Jicha G.A.
        • Cotman C.
        • Cottrell B.
        • Montine T.J.
        • Thomas R.G.
        • Aisen P.
        Antioxidants for alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures.
        Arch. Neurol. 2012; 69: 836-841
        • Imano H.
        • Iso H.
        • Kiyama M.
        • Yamagishi K.
        • Ohira T.
        • Sato S.
        • Noda H.
        • Maeda K.
        • Okada T.
        • Tanigawa T.
        • Kitamura A.
        Non-fasting blood glucose and risk of incident coronary heart disease in middle-aged general population: the Circulatory Risk in Communities Study (CIRCS).
        Prev. Med. 2012; 55: 603-607
        • Ikeda A.
        • Yamagishi K.
        • Tanigawa T.
        • Cui R.
        • Yao M.
        • Noda H.
        • Umesawa M.
        • Chei C.
        • Yokota K.
        • Shiina Y.
        • Harada M.
        • Murata K.
        • Asada T.
        • Shimamoto T.
        • Iso H.
        Cigarette smoking and risk of disabling dementia in a japanese rural community: a nested case-control study.
        Cerebrovasc. Dis. 2008; 25: 324-331
        • Yamashita S.
        • Yamamoto Y.
        Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stress.
        Anal. Biochem. 1997; 250: 66-73
        • Nakamura M.
        • Sato S.
        • Shimamoto T.
        Improvement in Japanese clinical laboratory measurements of total cholesterol and hdl-cholesterol by the us cholesterol reference method laboratory network.
        J. Atheroscler. Thromb. 2003; 10: 145-153
      1. International guidelines for ethical review of epidemiological studies.
        Law Med. Health Care. 1991; 19: 247-258
        • Kaikkonen J.
        • Nyyssonen K.
        • Salonen J.T.
        Measurement and stability of plasma reduced, oxidized and total coenzyme Q10 in humans.
        Scand. J. Clin. Lab. Invest. 1999; 59: 457-466

      Linked Article

      • Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population
        AtherosclerosisVol. 237Issue 2
        • Preview
          Mitochondrial impairment and increased oxidative stress are considered to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. Coenzyme Q10 (CoQ10) is a component of the electron transport chain localized on the inner membrane of the mitochondria. In addition to its bioenergetic activity required for ATP synthesis, CoQ10 also has antioxidant activity in mitochondrial and lipid membranes, which protects against the reactive oxidative species generated during oxidative phosphorylation.
        • Full-Text
        • PDF
        Open Access