Advertisement
Research Article| Volume 237, ISSUE 2, P725-733, December 2014

Ribose-cysteine increases glutathione-based antioxidant status and reduces LDL in human lipoprotein(a) mice

      Highlights

      • We tested the in vivo effect of ribose-cysteine on glutathione and plasma lipids.
      • Ribose-cysteine increased GSH and GPx activity and lowered oxidised lipids.
      • Ribose-cysteine significantly decreased LDL, apoB and Lp(a) levels.
      • Ribose-cysteine might be an ideal intervention to increase protection against CVD.

      Abstract

      Objective: d-ribose-l-cysteine (ribose-cysteine) is a cysteine analogue designed to increase the synthesis of glutathione (GSH). GSH is a cofactor for glutathione peroxidase (GPx), the redox enzyme that catalyses the reduction of lipid peroxides. A low GPx activity and increased oxidised lipids are associated with the development of cardiovascular disease (CVD). Here we aimed to investigate the effect of ribose-cysteine supplementation on GSH, GPx, lipid oxidation products and plasma lipids in vivo. Methods: Human lipoprotein(a) [Lp(a)] transgenic mice were treated with 4 mg/day ribose-cysteine (0.16 g/kg body weight) for 8 weeks. Livers and blood were harvested from treated and untreated controls (n = 9 per group) and GSH concentrations, GPx activity, thiobarbituric acid reactive substances (TBARS), 8-isoprostanes and plasma lipid concentrations were measured. Results: Ribose-cysteine increased GSH concentrations in the liver and plasma (P < 0.05). GPx activity was increased in both liver (1.7 fold, P < 0.01) and erythrocytes (3.5 fold, P < 0.05). TBARS concentrations in the liver, plasma and aortae were significantly reduced with ribose-cysteine (P < 0.01, P < 0.0005 and P < 0.01, respectively) as were the concentrations of 8-isoprostanes in the liver and aortae (P < 0.0005, P < 0.01, respectively). Ribose-cysteine treated mice showed significant decreases in LDL, Lp(a) and apoB concentrations (P < 0.05, P < 0.01 and P < 0.05, respectively), an effect which was associated with upregulation of the LDL receptor (LDLR).Conclusions: As ribose-cysteine lowers LDL, Lp(a) and oxidised lipid concentrations, it might be an ideal intervention to increase protection against the development of atherosclerosis.

      Keywords

      Abbreviations:

      CVD (cardiovascular disease), Lp(a) (lipoprotein(a)), LDL (low density lipoprotein), HDL (high density lipoprotein), TG (triglycerides), apoB (apolipoproteinB-100), GSH (glutathione), GPx (glutathione peroxidase), TBARS (thiobarbituric acid reactive substances)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lusis A.J.
        Atherosclerosis.
        Nature. 2000; 407: 233-241
        • Castelli W.P.
        • Anderson K.
        A population at risk. Prevalence of high cholesterol levels in hypertensive patents in the framingham study.
        Am. J. Med. 1986; 80: 23-32
        • Erqou S.
        • Kaptoge S.
        • Perry P.L.
        • di Angelantonio E.
        • Thompson A.
        • White I.R.
        • Marcovina S.M.
        • Collins R.
        • Thompson S.G.
        • Danesh J.
        Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality.
        JAMA. 2009; 302: 412-423
        • Tsimikas S.
        • Kiechl S.
        • Willeit J.
        • Mayr M.
        • Miller E.R.
        • Kronenberg F.
        • Xu Q.
        • Bergmark C.
        • Weger S.
        • Oberhollenzer F.
        • Witztum J.L.
        Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease.
        J. Am. Coll. Cardiol. 2006; 47: 2219-2228
        • Tsimikas S.
        • Clopton P.
        • Brilakis E.S.
        • Marcovina S.M.
        • Khera A.
        • Miller E.R.
        • de Lemos J.A.
        • Witztum J.L.
        Relationship of oxidized phospholipids on apolipoprotein B-100 particles to race/ethnicity, apolipoprotein(a) isoform size, and cardiovascular risk factors: results from the dallas heart study.
        Circulation. 2009; 119: 1711-1719
        • Lubos E.
        • Loscalzo J.
        • Handy D.E.
        Glutathione peroxidase-1 in health and disease: from molecular mechanism to therapeutic opportunities.
        Antioxid. Redox Signal. 2011; 15: 1957-1983
        • Younes M.
        • Siegers C.P.
        Mechanistic aspects of enhanced lipid peroxidation following glutathione depletion in vivo.
        Chem. Biol. Interact. 1981; 34: 257-266
        • Cheng F.
        • Torzewski M.
        • Degreif A.
        • Rossmann H.
        • Canisius A.
        • Lackner K.J.
        Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: implications for atherogenesis.
        PLoS ONE. 2013; 8: e72063
        • Blankenberg S.
        • Rupprecht H.J.
        • Bickel C.
        • Torzewski M.
        • Hafner G.
        • Tiret L.
        • Smieja M.
        • Cambien F.
        • Meyer J.
        • Lackner K.J.
        Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease.
        N. Engl. J. Med. 2003; 349: 1605-1613
        • Buijsse B.
        • Lee D.H.
        • Steffen L.
        • Erickson R.R.
        • Luepker R.V.
        • Jacobs Jr., D.R.
        • Holtzman J.L.
        Low serum glutathione peroxidase activity is associated with increased cardiovascular mortality in individuals with low HDLc's.
        PLoS ONE. 2012; 7: e38901
        • Lu S.C.
        Glutathione synthesis.
        Biochimica Biophysica Acta. 2013; 1830: 3143-3153
        • Kaplowitz N.
        • Aw T.Y.
        • Ookhtens M.
        The regulation of hepatic glutathione.
        Ann. Rev. Pharmacol. Toxicol. 1985; 25: 715-744
        • Birnbaum S.M.
        • Winitz M.
        • Greenstein J.P.
        Quantitative nutritional studies with water-soluble, chemically defined diets. III. Individual amino acids as sources of “non-essential” nitrogen.
        Arch. Biochem. Biophys. 1957; 72: 428-436
        • Dekhuijzen P.N.R.
        Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease.
        Eur. Respir. J. 2004; 23: 629-636
        • Treweeke A.T.
        • Winterburn T.J.
        • Mackenzie I.
        • Barrett F.
        • Barr C.
        • Rushworth G.F.
        • Dransfield I.
        • MacRury S.M.
        • Megson I.L.
        N-acetylcysteine inhibits platelet-monocyte conjugation in patients with type 2 diabetes with depleted intraplatelet glutathione: a randomised controlled trial.
        Diabetologia. 2012; 55: 2920-2928
        • Vale J.A.
        • Proudfoot A.T.
        Paracetamol (acetaminophen) poisoning.
        Lancet. 1995; 346: 547-552
        • Roberts J.C.
        • Nagasawa H.T.
        • Zera R.T.
        • Fricke R.F.
        • Goon D.J.
        Prodrugs of L-cysteine as protective agents against acetaminophen-induced hepatotoxicity. 2-(polyhydroxyalkyl)-and 2-(polyacetoxyalkyl)thiazolidine-4(R)-carboxylic acids.
        J. Med. Chem. 1987; : 1891-1896
        • Roberts J.C.
        • Francetic D.J.
        Mechanisms of chemoprotection by RibCys, a thiazolidine prodrug of L-cysteine.
        Med. Chem. Res. 1991; 1: 213-219
        • Roberts J.C.
        • Francetic D.J.
        Time course for the elevation of glutathione in numerous organs of L1210-bearing CDF1 mice given the L-cysteine prodrug, RibCys.
        Toxicol. Lett. 1991; 59: 245-251
        • Linton M.F.
        • Farese Jr., R.V.
        • Chiesa G.
        • Grass D.S.
        • Chin P.
        • Hammer R.E.
        • Hobbs H.H.
        • Young S.G.
        Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a).
        J. Clin. Invest. 1993; 92: 3029-3037
        • Chiesa G.
        • Hobbs H.H.
        • Koschinsky M.L.
        • Lawn R.M.
        • Maika S.D.
        • Hammer R.E.
        Reconstitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a).
        J. Biol. Chem. 1992; 267: 24369-24374
        • Cotgreave I.A.
        • Moldeus P.
        Methodologies for the application of monobromobimane to the simultaneous analysis of soluble and protein thiol components of biological systems.
        J. Biochem. Biophys. Methods. 1986; 13: 231-249
        • McCord J.M.
        • Fridovich I.
        The generation of superoxide radicals during the auto-oxidation of hemoglobin.
        J. Biol. Chem. 1972; 247: 6960-6962
        • Williamson K.S.
        • Hensley K.
        • Floyd R.A.
        Fluorometric and colourimetric assessment of thiobarbituric acid-reactive lipid aldehydes in biological matrices.
        in: Hensley K. Floyd R.A. Methods in pharmacology and toxicology: methods in biological oxidative stress. Humana Press Inc, Totowa NJ, USA2003
        • Bartels E.D.
        • Lauritsen M.
        • Nielsen L.B.
        Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice.
        Diabetes. 2002; 51: 1233-1239
        • Purcell-Huynh D.A.
        • Farese R.V.
        • Johnson D.F.
        • Flynn L.M.
        • Pierotti V.
        • New land D.L.
        • Linton M.F.
        • Sanan D.A.
        • Young S.G.
        Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet.
        J. Clin. Invest. 1995; 95: 2246-2257
        • Friedewald W.T.
        • Levy R.I.
        • Fredrickson D.S.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
        Clin. Chem. 1972; 18: 499-502
        • Marcovina S.M.
        • Albers J.J.
        • Gabel B.
        • Koschinsky M.L.
        • Gaur V.P.
        Effect of the number of apolipoprotein(a) kringle 4 domains on immunochemical measurements of lipoprotein(a).
        Clin. Chem. 1995; 41: 246-255
        • Pease R.J.
        • Milne R.W.
        • Jessup W.K.
        • Law A.
        • Provost P.
        • Fruchart J.C.
        • Dean R.T.
        • Marcel Y.L.
        • Scott J.
        Use of bacterial expression cloning to localize the epitopes for a series of monoclonal antibodies against apolipoprotein B100.
        J. Biol. Chem. 1990; 265: 553-568
        • Roberts J.C.
        • Charyulu R.L.
        • Zera R.T.
        • Nagasawa H.T.
        Protection against acetaminophen hepatotoxicity by ribose-cysteine (Rib-Cys).
        Pharmacol. Toxicol. 1992; 70: 281-285
        • Lucas A.M.
        • Hennig G.
        • Domnick P.K.
        • Whiteley H.E.
        • Roberts J.C.
        • Cohen S.D.
        Ribose cysteine protects against acetaminophen-induced hepatic and renal toxicity.
        Toxicol. Pathol. 2000; 28: 697-704
        • Hsu C.C.
        • Huang C.N.
        • Hung Y.C.
        • Yin M.C.
        Five cysteine-containing compounds have antioxidative activity in Balb/cA Mice.
        J. Nutr. 2004; 134: 149-152
        • Kasperczyk S.
        • Dobrakowski M.
        • Kasperczyk A.
        • Machnik G.
        • Birkner E.
        Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers.
        Environ. Toxicol. Pharmacol. 2014; 37: 638-647
        • Ledwozyw A.
        • Michalak J.
        • Stepien A.
        • Kadziolka A.
        The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis.
        Clin. Chim. Acta. 1986; 155: 275-284
        • Kostner K.
        • Hornykewycz S.
        • Yang P.
        • Neunteufl T.
        • Glogar D.
        • Weidinger F.
        • Maurer G.
        • Huber K.
        Is oxidative stress causally linked to unstable angina pectoris? A study in 100 CAD patients and matched controls.
        Cardiovasc. Res. 1997; 36: 330-336
        • Chirico S.
        • Smith C.
        • Marchant C.
        • Mitchinson M.J.
        • Halliwell B.
        Lipid peroxidation in hyperlipidaemic patients. A study of plasma using an HPLC-based thiobarbituric acid test.
        Free Rad. Res. Comms. 1993; 19: 51-57
        • Morrow J.D.
        • Roberts L.J.
        The isoprostanes: unique bioactive products of lipid peroxidation.
        Prog. Lipid Res. 1997; 36: 1-21
        • Krauss R.M.
        Hold the antioxidants and improve plasma lipids?.
        J. Clin. Invest. 2004; 113: 1253-1255
        • Miller N.E.
        Why does plasma low density lipoprotein concentration in adults increase with age?.
        Lancet. 1984; 323: 263-267
        • Moon J.
        • Lee S.M.
        • Do H.J.
        • Cho Y.
        • Chung J.H.
        • Shin M.J.
        Quercetin up-regulates LDL receptor expression in HepG2 cells.
        Phytother. Res. 2012; 26: 1688-1694
        • Lin C.C.
        • Yin M.C.
        Effects of cysteine containing compounds on biosynthesis of triacylglycerol and cholesterol and anti-oxidative protection in liver from mice consuming a high-fat diet.
        Br. J. Nutr. 2008; 99: 37-43
        • Gavish D.
        • Breslow J.L.
        Lipoprotein(a) reduction by N-Acetylcysteine.
        Lancet. 1991; 337: 203-204
        • Ahmed M.S.
        • Jadhav A.B.
        • Hassan A.
        • Meng Q.H.
        Acute phase reactants as novel predictors of cardiovascular disease.
        ISRN Inflamm. 2012; 2012: 1-18
        • Hofmann S.L.
        • Eaton D.L.
        • Brown M.S.
        • McConathy W.J.
        • Goldstein J.L.
        • Hammer R.E.
        Overexpression of human low density lipoprotein receptors leads to accelerated catabolism of Lp(a) lipoprotein in transgenic mice.
        J. Clin. Invest. 1990; : 1542-1547
        • Hoover-Plow J.
        • Huang M.
        Lipoprotein(a) metabolism: potential sites for therapeutic targets.
        Metabolism. 2012; : 1-13
        • Heart Protection Study Collaborative Group
        MRC/BHF heart protection study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial.
        Lancet. 2002; 360: 23-33
        • Franceschini G.
        • Sirtori M.
        • Vaccarino V.
        • Gianfranceschi G.
        • Rezzonico L.
        • Chiesa G.
        • Sirtori C.R.
        Mechanisms of HDL reduction after probucol. Changes in HDL subfractions and increased reverse cholesteryl ester transfer.
        Arterioscler. Thromb. Vasc. Biol. 1989; 9: 462-469