CD1d serves as a surface receptor for oxidized cholesterol induction of peroxisome proliferator-activated receptor-γ

  • Author Footnotes
    1 Current address: Houston Methodist Research Institute, 6670 Bertner Avenue, MS-F8-060, Houston, TX 77030, USA.
    Corina Rosales
    1 Current address: Houston Methodist Research Institute, 6670 Bertner Avenue, MS-F8-060, Houston, TX 77030, USA.
    Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center at Houston, USA
    Search for articles by this author
  • Daming Tang
    Texas Heart Institute, Houston, TX 77030, USA
    Search for articles by this author
  • Yong-Jian Geng
    Corresponding author. The University of Texas Medical School at Houston, 6431 Fannin Street, MSB 1.246, Houston, TX 77030, USA.
    Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center at Houston, USA

    Texas Heart Institute, Houston, TX 77030, USA
    Search for articles by this author
  • Author Footnotes
    1 Current address: Houston Methodist Research Institute, 6670 Bertner Avenue, MS-F8-060, Houston, TX 77030, USA.


      • CD1d binds oxysterols 7-ketocholesterol and 25-hydroxycholesterol.
      • Ablation of CD1d receptor in cells leads to a decreased binding of oxysterols.
      • CD1d/oxysterol binding results in PPARγ activation and lipid accumulation.



      The cluster of differentiation-1d (CD1d) recognizes and presents the lipid antigens to NK-T lymphocytes. Atherosclerotic lesions contain atherogenic lipids, mainly cholesterol and its oxides. Peroxisome proliferator-activated receptor-γ (PPARγ) is also known to exist in atherosclerotic lesions, participating in regulation of lipid metabolism. The current study tested whether CD1d acts as a surface receptor that mediates induction and activation of PPARγ by oxysterols commonly found in atherosclerotic lesions.

      Methods and results

      CD1d overexpression in HEK 293 cells transfected with CD1d cDNA was confirmed by fluorescence, flow cytometry, Western blotting and mRNA expression. Tritiated (3H) 7-ketocholesterol (7K) was used for lipid binding assays. Radioactive assessment demonstrated an increased 7K-binding activity HEK 293 cells with CD1d overexpression. The 7K binding could be blocked by another oxysterol, 25-hydroxycholesterol, but not by native free cholesterol. Addition of CD1d:IgG dimer protein or an anti-CD1d antibody, but not control IgG, significantly diminished 7K binding to CD1d-expressing HEK 293 cells. CD1d deficiency markedly diminished the 7K-binding in macrophages and smooth muscle cells. Western blot and gel shift assays demonstrated that CD1d-mediated 7K binding induced expression and activation of PPARγ. The PPARγ agonist PGJ2 enhances the 7K stimulatory effect on PPARγ expression and activity but the antagonist GW9662 inhibits the 7K effect on the CD1d-expressing cells.


      CD1d acts as a cell surface receptor that recognizes and binds oxysterols and initializes a pathway connecting oxysterol binding to PPARγ activation.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Nakai Y.
        • Iwabuchi K.
        • Fujii S.
        • et al.
        Natural killer T cells accelerate atherogenesis in mice.
        Blood. 2004; 104: 2051-2059
        • Tupin E.
        • Nicoletti A.
        • Elhage R.
        • et al.
        CD1d-dependent activation of NKT cells aggravates atherosclerosis.
        J. Exp. Med. 2004; 199: 417-422
        • Bendelac A.
        • Rivera M.N.
        • Park S.H.
        • et al.
        Mouse CD1-specific NK1 T cells: development, specificity, and function.
        Annu. Rev. Immunol. 1997; 15: 535-562
        • Kronenberg M.
        Toward an understanding of NKT cell biology: progress and paradoxes.
        Annu. Rev. Immunol. 2005; 23: 877-900
        • Bendelac A.
        Mouse NK1+ T cells.
        Curr. Opin. Immunol. 1995; 7: 367-374
        • Kamada N.
        • Iijima H.
        • Kimura K.
        • et al.
        Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to V(alpha)14 NKT cells.
        Int. Immunol. 2001; 13: 853-861
        • Burdin N.
        • Brossay L.
        • Degano M.
        • et al.
        Structural requirements for antigen presentation by mouse CD1.
        Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 10156-10161
        • Naidenko O.V.
        • Koezuka Y.
        • Kronenberg M.
        CD1-mediated antigen presentation of glycosphingolipids.
        Microbes Infect./Inst. Pasteur. 2000; 2: 621-631
        • Melian A.
        • Geng Y.J.
        • Sukhova G.K.
        • et al.
        CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells.
        Am. J. Pathol. 1999; 155: 775-786
        • Aslanian A.M.
        • Chapman H.A.
        • Charo I.F.
        Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 628-632
        • Major A.S.
        • Wilson M.T.
        • McCaleb J.L.
        • et al.
        Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 2351-2357
        • Zhou D.
        • Mattner J.
        • Cantu 3rd, C.
        • et al.
        Lysosomal glycosphingolipid recognition by NKT cells.
        Science. 2004; 306: 1786-1789
        • Brigl M.
        • Brenner M.B.
        CD1: antigen presentation and T cell function.
        Annu. Rev. Immunol. 2004; 22: 817-890
        • Kinjo Y.
        • Wu D.
        • Kim G.
        • et al.
        Recognition of bacterial glycosphingolipids by natural killer T cells.
        Nature. 2005; 434: 520-525
        • Bendelac A.
        • Lantz O.
        • Quimby M.E.
        • et al.
        CD1 recognition by mouse NK1+ T lymphocytes.
        Science. 1995; 268: 863-865
        • Guidry T.V.
        • Olsen M.
        • Kil K.S.
        • et al.
        Failure of CD1D-/- mice to elicit hypersensitive granulomas to mycobacterial cord factor trehalose 6,6'-dimycolate.
        J. Interferon Cytokine Res. 2004; 24: 362-371
        • Actor J.K.
        • Olsen M.
        • Hunter Jr., R.L.
        • et al.
        Dysregulated response to mycobacterial cord factor trehalose-6,6'-dimycolate in CD1D-/- mice.
        J. Interferon Cytokine Res. 2001; 21: 1089-1096
        • Brown A.J.
        • Jessup W.
        Oxysterols and atherosclerosis.
        Atherosclerosis. 1999; 142: 1-28
        • Maor I.
        • Kaplan M.
        • Hayek T.
        • et al.
        Oxidized monocyte-derived macrophages in aortic atherosclerotic lesion from apolipoprotein E-deficient mice and from human carotid artery contain lipid peroxides and oxysterols.
        Biochem. Biophys. Res. Commun. 2000; 269: 775-780
        • Brown J.D.
        • Plutzky J.
        Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets.
        Circulation. 2007; 115: 518-533
        • Michalik L.
        • Auwerx J.
        • Berger J.P.
        • et al.
        International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors.
        Pharmacol. Rev. 2006; 58: 726-741
        • Plutzky J.
        The potential role of peroxisome proliferator-activated receptors on inflammation in type 2 diabetes mellitus and atherosclerosis.
        Am. J. Cardiol. 2003; 92: 34J-41J
        • Marx N.
        • Kehrle B.
        • Kohlhammer K.
        • et al.
        PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis.
        Circ. Res. 2002; 90: 703-710
        • Marx N.
        • Libby P.
        • Plutzky J.
        Peroxisome proliferator-activated receptors (PPARs) and their role in the vessel wall: possible mediators of cardiovascular risk?.
        J. Cardiovasc. Risk. 2001; 8: 203-210
        • Plutzky J.
        Peroxisome proliferator-activated receptors in vascular biology and atherosclerosis: emerging insights for evolving paradigms.
        Curr. Atheroscler. Rep. 2000; 2: 327-335
        • Fievet C.
        • Fruchart J.C.
        • Staels B.
        Genetically-engineered animals as research models for atherosclerosis: their use for the characterization of PPAR agonists in the treatment of cardiometabolic disorders.
        Front. Biosci. 2007; 12: 4132-4156
        • Hou M.
        • Xia M.
        • Zhu H.
        • et al.
        Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARgamma-LXRalpha-ABCA1-dependent pathway associated with apoE.
        Cell Biochem. Funct. 2007; 25: 33-44
        • Zhang L.
        • Chawla A.
        Role of PPARgamma in macrophage biology and atherosclerosis.
        Trends Endocrinol. Metab. 2004; 15: 500-505
        • Lyons M.A.
        • Brown A.J.
        Int. J. Biochem. Cell Biol. 1999; 31: 369-375
        • Jessup W.
        • Brown A.J.
        Novel routes for metabolism of 7-ketocholesterol.
        Rejuvenation Res. 2005; 8: 9-12
        • Monroy M.A.
        • Opperman K.K.
        • Pucciarelli M.
        • et al.
        THE PPARgamma ligand 15d-PGJ2 modulates macrophage activation after injury in a murine trauma model.
        Shock. 2007; 28: 186-191
        • Burton J.D.
        • Castillo M.E.
        • Goldenberg D.M.
        • et al.
        Peroxisome proliferator-activated receptor-gamma antagonists exhibit potent antiproliferative effects versus many hematopoietic and epithelial cancer cell lines.
        Anti-cancer Drugs. 2007; 18: 525-534
        • Brown A.J.
        • Leong S.L.
        • Dean R.T.
        • et al.
        7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque.
        J. Lipid Res. 1997; 38: 1730-1745
        • Geng Y.J.
        Biologic effect and molecular regulation of vascular apoptosis in atherosclerosis.
        Curr. Atheroscler. Rep. 2001; 3: 234-242
        • Naidenko O.V.
        • Maher J.K.
        • Ernst W.A.
        • et al.
        Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules.
        J. Exp. Med. 1999; 190: 1069-1080
        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • VanderLaan P.A.
        • Reardon C.A.
        • Sagiv Y.
        • et al.
        Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis.
        Am. J. Pathol. 2007; 170: 1100-1107
        • Heikkinen S.
        • Auwerx J.
        • Argmann C.A.
        PPARgamma in human and mouse physiology.
        Biochim. Biophys. Acta. 2007; 1771: 999-1013
        • Szatmari I.
        • Pap A.
        • Ruhl R.
        • et al.
        PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells.
        J. Exp. Med. 2006; 203: 2351-2362
        • Gogolak P.
        • Rethi B.
        • Szatmari I.
        • et al.
        Differentiation of CD1a- and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPARgamma.
        Blood. 2007; 109: 643-652
        • Yue S.C.
        • Shaulov A.
        • Wang R.
        • et al.
        CD1d ligation on human monocytes directly signals rapid NF-kappaB activation and production of bioactive IL-12.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 11811-11816
        • Zeng Z.
        • Castano A.R.
        • Segelke B.W.
        • et al.
        Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove.
        Science. 1997; 277: 339-345
        • Kawano T.
        • Cui J.
        • Koezuka Y.
        • et al.
        CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides.
        Science. 1997; 278: 1626-1629
        • Getz G.S.
        • Vanderlaan P.A.
        • Reardon C.A.
        Natural killer T cells in lipoprotein metabolism and atherosclerosis.
        Thromb. Haemost. 2011; 106: 814-819
        • Kyriakakis E.
        • Cavallari M.
        • Andert J.
        • et al.
        Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis.
        Eur. J. Immunol. 2010; 40: 3268-3279
        • van Puijvelde G.H.
        • van Wanrooij E.J.
        • Hauer A.D.
        • et al.
        Effect of natural killer T cell activation on the initiation of atherosclerosis.
        Thromb. Haemost. 2009; 102: 223-230
        • Rogers L.
        • Burchat S.
        • Gage J.
        • et al.
        Deficiency of invariant V alpha 14 natural killer T cells decreases atherosclerosis in LDL receptor null mice.
        Cardiovasc. Res. 2008; 78: 167-174
        • Major A.S.
        • Joyce S.
        • Van Kaer L.
        Lipid metabolism, atherogenesis and CD1-restricted antigen presentation.
        Trends Mol. Med. 2006; 12: 270-278
        • Madonna R.
        • Wu H.
        • Shelat H.
        • et al.
        CD1d-associated expression of NF-kB and cardiac dysfunction in diabetic and obese mice.
        Int. J. Immunopathol. Pharmacol. 2013; 26: 59-73