Advertisement

Variants in ALOX5, ALOX5AP and LTA4H are not associated with atherosclerotic plaque phenotypes: The Athero-Express Genomics Study

      Highlights

      • We included patients from the STAGE study and the Athero-Express Biobank Study (AE).
      • We associated 1,453 single-nucleotide variants in ALOX5, ALOX5AP and LTA4H with expression in STAGE.
      • We associated SNVs with seven histologically defined plaque phenotypes in the AE.
      • In STAGE we replicate a cis-eQTL (rs6538697, p = 1.96 × 10−6) for LTA4H expression.
      • We found no associations of SNVs near ALOX5, ALOX5AP and LTA4H with serum levels, or plaque phenotypes.

      Abstract

      Background

      The eicosanoid genes ALOX5, ALOX5AP and LTA4H have been implicated in atherosclerosis. We assessed the impact of common variants in these genes on gene expression, circulating protein levels, and atherosclerotic plaque phenotypes.

      Methods

      We included patients from the Stockholm Atherosclerosis Gene Expression study (STAGE, N = 109), and the Athero-Express Biobank Study (AE, N = 1443). We tested 1453 single-nucleotide variants (SNVs) in ALOX5, ALOX5AP and LTA4H for association with gene expression in STAGE. We also tested these SNVs for association with seven histologically defined plaque phenotypes in the AE (which included calcification, collagen, cellular content, atheroma size, and intraplaque vessel density and hemorrhage).

      Results

      We replicate a known cis-eQTL (rs6538697, p = 1.96 × 10−6) for LTA4H expression in whole blood of patients from STAGE. We found no significant association for any of the SNVs tested with serum levels of ALOX5 or ALOX5AP (p > 5.79 × 10−4). For atherosclerotic plaque phenotypes the strongest associations were found for intraplaque vessel density and smooth muscle cells in the ALOX5AP locus (p > 1.67 × 10−4).

      Conclusions

      We replicate a known eQTL for LTA4H expression in whole blood using STAGE data. We found no associations of variants in and around ALOX5, ALOX5AP and LTA4H with serum ALOX5 or ALOX5AP levels, or plaque phenotypes. On the supposition that these genes play a causal role in atherosclerosis, these results suggest that common variants in these loci play a limited role (if any) in influencing advanced atherosclerotic plaque morphology to the extent that it impacts atherosclerotic disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mehrabian M.
        • Allayee H.
        • Wong J.
        • Shi W.
        • Wang X.-P.
        • Shaposhnik Z.
        • et al.
        Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice.
        Circ. Res. 2002; 91: 120-126
        • Fortunato G.
        • Di Taranto M.D.
        • Bracale U.M.
        • Del Guercio L.
        • Carbone F.
        • Mazzaccara C.
        • et al.
        Decreased paraoxonase-2 expression in human carotids during the progression of atherosclerosis.
        Atvb. 2008; 28: 594-600
        • Di Taranto M.D.
        • Morgante A.
        • Bracale U.M.
        • D textquoteright Armiento F.P.
        • Porcellini M.
        • Bracale G.
        • et al.
        Atherosclerosis. 2012; 220: 93-101
        • Cipollone F.
        Association between 5-lipoxygenase expression and plaque instability in humans.
        Atvb. 2005; 25: 1665-1670
        • Folkersen L.
        • Diez D.
        • Wheelock C.E.
        • Haeggstrom J.Z.
        • Goto S.
        • Eriksson P.
        • et al.
        GeneRegionScan: a bioconductor package for probe-level analysis of specific, small regions of the genome.
        Bioinformatics. 2009; 25: 1978-1979
        • In K.H.
        • Asano K.
        • Beier D.
        • Grobholz J.
        • Finn P.W.
        • Silverman E.K.
        • et al.
        Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.
        J. Clin. Investig. 1997; 99: 1130-1137
        • Vikman S.
        • Brena R.M.
        • Armstrong P.
        • Hartiala J.
        • Stephensen C.B.
        • Allayee H.
        Functional analysis of 5-lipoxygenase promoter repeat variants.
        Hum. Mol. Genet. 2009; 18: 4521-4529
        • Dishart D.
        • Schnur N.
        • Klan N.
        • Werz O.
        • Steinhilber D.
        • Samuelsson B.
        • et al.
        GC-rich sequences in the 5-lipoxygenase gene promoter are required for expression in mono Mac 6 cells, characterization of a novel Sp1 binding site.
        Biochim. Biophys. Acta. 2005; 1738: 37-47
        • Dwyer J.H.
        • Allayee H.
        • Dwyer K.M.
        • Fan J.
        • Wu H.
        • Mar R.
        • et al.
        Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis.
        N. Engl. J. Med. 2003; 350: 29-37
        • Shah S.H.
        • Hauser E.R.
        • Crosslin D.
        • Wang L.
        • Haynes C.
        • Connelly J.
        • et al.
        ALOX5AP variants are associated with in-stent restenosis after percutaneous coronary intervention.
        Atherosclerosis. 2008; 201: 148-154
        • Helgadottir A.
        • Manolescu A.
        • Thorleifsson G.
        • Gretarsdottir S.
        • Jonsdottir H.
        • Thorsteinsdottir U.
        • et al.
        The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke.
        Nat. Genet. 2004; 36: 233-239
        • Helgadottir A.
        • Gretarsdottir S.
        • Clair D.S.
        • Manolescu A.
        • Cheung J.
        • Thorleifsson G.
        • et al.
        Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population.
        Am. J. Hum. Genet. 2005; 76: 505-509
        • Helgadottir A.
        • Manolescu A.
        • Helgason A.
        • Thorleifsson G.
        • Thorsteinsdottir U.
        • Gudbjartsson D.F.
        • et al.
        A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction.
        Nat. Genet. 2005; 38: 68-74
        • Allayee H.
        • Baylin A.
        • Hartiala J.
        • Wijesuriya H.
        • Mehrabian M.
        • Lusis A.J.
        • et al.
        Nutrigenetic association of the 5-lipoxygenase gene with myocardial infarction.
        Am. J. Clin. Nutr. 2008; 88: 934-940
        • Sanchez-Galan E.
        • Gomez-Hernandez A.
        • Vidal C.
        • Martin-Ventura J.L.
        • Blanco-Colio L.M.
        • Munoz-Garcia B.
        • et al.
        Leukotriene B4 enhances the activity of nuclear factor- B pathway through BLT1 and BLT2 receptors in atherosclerosis.
        Cardiovasc. Res. 2008; 81: 216-225
        • Kuhns D.B.
        • Nelson E.L.
        • Alvord W.G.
        • Gallin J.I.
        Fibrinogen induces IL-8 synthesis in human neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine or leukotriene B-4.
        J. Immunol. 2001; 167: 2869-2878
        • Huang L.
        Leukotriene B4 strongly increases monocyte chemoattractant protein-1 in human monocytes.
        Atvb. 2004; 24: 1783-1788
        • Shi C.
        • Pamer E.G.
        Monocyte recruitment during infection and inflammation.
        Nat. Rev. Immunol. 2011; 11: 762-774
        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        Progress and challenges in translating the biology of atherosclerosis.
        Nature. 2011; 473: 317-325
        • Schunkert H.
        • König I.R.
        • Kathiresan S.
        • Reilly M.P.
        • Assimes T.L.
        • Holm H.
        • et al.
        Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease.
        Nat. Genet. 2011; 43: 333-338
        • Traylor M.
        • Farrall M.
        • Holliday E.G.
        • Sudlow C.
        • Hopewell J.C.
        • Cheng Y.-C.
        • et al.
        Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.
        Lancet Neurol. 2012; 11: 951-962
        • Huang H.
        • Zeng Z.
        • Li J.
        • Zhang L.
        • Chen Y.
        Variants of arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene and risk of coronary heart disease: a meta-analysis.
        Arch. Med. Res. 2010; 41: 634-641
        • The 1000 Genomes Project Consortium
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073
        • Verhoeven B.A.N.
        • Velema E.
        • Schoneveld A.H.
        • de Vries J.-P.P.M.
        • de Bruin P.
        • Seldenrijk C.A.
        • et al.
        Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design.
        Eur. J. Epidemiol. 2003; 19: 1127-1133
        • Hägg S.
        • Skogsberg J.
        • Lundström J.
        • Noori P.
        • Nilsson R.
        • Zhong H.
        • et al.
        Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study.
        PLoS Genet. 2009; 5: e1000754
        • Howie B.
        • Fuchsberger C.
        • Stephens M.
        • Marchini J.
        • Abecasis G.R.
        Fast and accurate genotype imputation in genome-wide association studies through pre-phasing.
        Nat. Genet. 2012; 44: 955-959
        • Delaneau O.
        • Marchini J.
        • Zagury J.F.
        A linear complexity phasing method for thousands of genomes.
        Nat. Methods. 2012; 9: 179-181https://doi.org/10.1038/nmeth.1785
        • Qi J.
        • Asl H.F.
        • Björkegren J.
        • Michoel T.
        kruX: matrix-based non-parametric eQTL discovery.
        BMC Bioinform. 2014; 15: 11
        • Boomsma D.I.
        • Wijmenga C.
        • Slagboom E.P.
        • Swertz M.A.
        • Karssen L.C.
        • Abdellaoui A.
        • et al.
        The genome of the Netherlands: design, and project goals.
        Eur. J. Hum. Genet. 2013; : 1-7
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.R.
        • Bender D.
        • et al.
        PLINK: a tool set for whole-genome association and population-based linkage analyses.
        Am. J. Hum. Genet. 2007; 81: 559-575
        • Assimes T.L.
        • Knowles J.W.
        • Priest J.R.
        • Basu A.
        • Volcik K.A.
        • Southwick A.
        • et al.
        Common polymorphisms of ALOX5 and ALOX5AP and risk of coronary artery disease.
        Hum. Genet. 2008; 123: 399-408
        • van Lammeren G.W.G.
        • Reichmann B.L.B.
        • Moll F.L.F.
        • Bots M.L.M.
        • de Kleijn D.P.V.D.
        • de Vries J.-P.P.M.J.
        • et al.
        Atherosclerotic plaque vulnerability as an explanation for the increased risk of stroke in elderly undergoing carotid artery stenting.
        Stroke. 2011; 42: 2550-2555
        • van den Borne P.
        • van der Laan S.W.
        • Bovens S.M.
        • Koole D.
        • Kowala M.C.
        • Michael L.F.
        • et al.
        Leukotriene b4 levels in human atherosclerotic plaques and abdominal aortic aneurysms.
        PLoS ONE. 2014; 9: e86522
        • Purcell S.
        • Cherny S.S.
        • Sham P.C.
        Genetic power calculator: design of linkage and association genetic mapping studies of complex traits.
        Bioinformatics. 2002; 19: 149-150
        • Krzywinski M.
        • Schein J.
        • Birol I.
        • Connors J.
        • Gascoyne R.
        • Horsman D.
        • et al.
        Circos: an information aesthetic for comparative genomics.
        Genome Res. 2009; 19: 1639-1645
        • Pruim R.J.
        • Welch R.P.
        • Sanna S.
        • Teslovich T.M.
        • Chines P.S.
        • Gliedt T.P.
        • et al.
        LocusZoom: regional visualization of genome-wide association scan results.
        Bioinformatics. 2010; 26: 2336-2337
      1. Genetics and beyond–the transcriptome of human monocytes and disease susceptibility.
        . 2010; 5: e10693
        • Fairfax B.P.
        • Makino S.
        • Radhakrishnan J.
        • Plant K.
        • Leslie S.
        • Dilthey A.
        • et al.
        Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles.
        Nat. Genet. 2012; 44: 502-510
        • Grundberg E.
        • Small K.S.
        • Hedman Å.K.
        • Nica A.C.
        • Buil A.
        • Keildson S.
        • et al.
        Mapping cis- and trans-regulatory effects across multiple tissues in twins.
        Nat. Genet. 2012; 44: 1084-1089
        • Westra H.-J.
        • Peters M.J.
        • Esko T.
        • Yaghootkar H.
        • Schurmann C.
        • Kettunen J.
        • et al.
        Systematic identification of trans eQTLs as putative drivers of known disease associations.
        Nat. Genet. 2013; 45: 1238-1243
        • Bevan S.
        • Traylor M.
        • Adib-Samii P.
        • Malik R.
        • Paul N.L.M.
        • Jackson C.
        • et al.
        Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations.
        Stroke. 2012; 43: 3161-3167
      2. The overdue promise of short tandem repeat variation for heritability.
        . 2014; 30: 504-512
        • Calvano S.E.
        • Xiao W.
        • Richards D.R.
        • Felciano R.M.
        • Baker H.V.
        • Cho R.J.
        • et al.
        A network-based analysis of systemic inflammation in humans.
        Nature. 2005; 437: 1032-1037
        • Karolchik D.
        • Barber G.P.
        • Casper J.
        • Clawson H.
        • Cline M.S.
        • Diekhans M.
        • et al.
        The UCSC genome browser database: 2014 update.
        Nucleic Acids Res. 2014; 42: D764-D770