Advertisement

Does cellular sex matter? Dimorphic transcriptional differences between female and male endothelial cells

      Highlights

      • Intrinsic sex-specific transcriptional profiles in HUVEC from male and female donors.
      • Higher expression of immune-related genes in female compared to male cells.
      • Female cells showed a stronger transcriptional response to shear stress.
      • Increased tube formation capacity and higher cell viability in female cells.
      • Discrimination between female and male cells in basic and applied research important.

      Abstract

      Objective

      Significant sex differences exist in cardiovascular diseases. Although an impact of gonadal hormones is presumed, it is largely unknown whether sexually dimorphic gene expression also plays a role and whether cells themselves show intrinsic sex differences.

      Methods

      We performed whole genome expression analyses in human umbilical vein endothelial cells (HUVEC) from 20 male and 20 female donors and compared levels of gene transcription between the sexes. To further assess whether there is a sex-specific response to stress, we subjected male and female HUVEC to shear for 24 h and analysed changes in gene expression.

      Results

      Genes indicative for greater immune responsiveness were stronger expressed in female compared to male HUVEC. There was a significant enrichment of 77 immune-related genes in female HUVEC. These increased transcriptional levels in female cells were verified for 20 genes by real-time RT-PCR. 6.7% of all mRNAs were regulated by shear stress. Female HUVEC showed a more pronounced transcriptional response to shear than did their male counterparts. In addition to quantitative differences, a number of genes were regulated in the opposite direction between the two sexes by shear stress. Functionally, female HUVEC showed a higher cell viability after serum starvation and an increased tube formation capacity compared to male cells.

      Conclusion

      These findings underscore the importance for differentiation between male and female cells in cell culture experiments. This may apply not only to endothelial cells but might be generalized to other cell types as well. The observed sexual dimorphisms in gene expression in endothelial cells may contribute to sex differences between males and females in endothelial function.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dunlay S.M.
        • Roger V.L.
        Gender differences in the pathophysiology, clinical presentation, and outcomes of ischemic heart failure.
        Curr. Heart Fail. Rep. 2012; 9: 267-276
        • Stangl V.
        • Witzel V.
        • Baumann G.
        • Stangl K.
        Current diagnostic concepts to detect coronary artery disease in women.
        Eur. Heart J. 2008; 29: 707-717
        • Jochmann N.
        • Stangl K.
        • Garbe E.
        • Baumann G.
        • Stangl V.
        Female-specific aspects in the pharmacotherapy of chronic cardiovascular diseases.
        Eur. Heart J. 2005; 26: 1585-1595
        • Regitz-Zagrosek V.
        • Dworatzek E.
        • Kintscher U.
        • Dragun D.
        Sex and sex hormone-dependent cardiovascular stress responses.
        Hypertension. 2013; 61: 270-277
        • Akishita M.
        • Yu J.
        Hormonal effects on blood vessels.
        Hypertens. Res. 2012; 35: 363-369
        • Knowlton A.A.
        • Lee A.R.
        Estrogen and the cardiovascular system.
        Pharmacol. Ther. 2012; 135: 54-70
        • Straface E.
        • Gambardella L.
        • Brandani M.
        • Malorni W.
        Sex differences at cellular level: “cells have a sex”.
        Handb. Exp. Pharmacol. 2012; 214: 49-65
        • Maselli A.
        • Matarrese P.
        • Straface E.
        • Canu S.
        • Franconi F.
        • Malorni W.
        Cell sex: a new look at cell fate studies.
        FASEB J. 2009; 23: 978-984
        • Wang J.
        • Bingaman S.
        • Huxley V.H.
        Intrinsic sex-specific differences in microvascular endothelial cell phosphodiesterases.
        Am. J. Physiol. Heart Circ. Physiol. 2010; 298: H1146-H1154
        • Heidecker B.
        • Lamirault G.
        • Kasper E.K.
        • Wittstein I.S.
        • Champion H.C.
        • Breton E.
        • Russell S.D.
        • Hall J.
        • Kittleson M.M.
        • Baughman K.L.
        • Hare J.M.
        The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences.
        Eur. Heart J. 2010; 31: 1188-1196
        • Johnson B.D.
        • Mather K.J.
        • Wallace J.P.
        Mechanotransduction of shear in the endothelium: basic studies and clinical implications.
        Vasc. Med. 2011; 16: 365-377
        • Stangl V.
        • Günther C.
        • Jarrin A.
        • Bramlage P.
        • Moobed M.
        • Staudt A.
        • Baumann G.
        • Stangl K.
        • Felix S.B.
        Homocysteine inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion via nuclear factor-kappaB dependent pathway.
        Biochem. Biophys. Res. Commun. 2001; 280: 1093-1100
        • Bongrazio M.
        • Baumann C.
        • Zakrzewicz A.
        • Pries A.R.
        • Gaehtgens P.
        Evidence for modulation of genes involved in vascular adaptation by prolonged exposure of endothelial cells to shear stress.
        Cardiovasc Res. 2000; 47: 384-393
        • Robinson J.
        • Halliwell J.A.
        • McWilliam H.
        • Lopez R.
        • Parham P.
        • Marsh S.G.
        The IMGT/HLA database.
        Nucleic Acids Res. 2013; 41: D1222-D1227
        • Pollitzer E.
        Biology: cell sex matters.
        Nature. 2013; 500: 23-24
        • Ritz S.A.
        • Antle D.M.
        • Côté J.
        • Deroy K.
        • Fraleigh N.
        • Messing K.
        • Parent L.
        • St-Pierre J.
        • Vaillancourt C.
        • Mergler D.
        First steps for integrating sex and gender considerations into basic experimental biomedical research.
        FASEB J. 2014; 28: 4-13
        • Horton R.
        • Wilming L.
        • Rand V.
        • Lovering R.C.
        • Bruford E.A.
        • Khodiyar V.K.
        • Lush M.J.
        • Povey S.
        • Talbot Jr., C.C.
        • Wright M.W.
        • Wain H.M.
        • Trowsdale J.
        • Ziegler A.
        • Beck S.
        Gene map of the extended human MHC.
        Nat. Rev. Genet. 2004; 5: 889-899
        • Lidington E.A.
        • Moyes D.L.
        • McCormack A.M.
        • Rose M.L.
        A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions.
        Transpl. Immunol. 1999; 7: 239-246
        • Barry J.A.
        • Hardiman P.J.
        • Siddiqui M.R.
        • Thomas M.
        Meta-analysis of sex difference in testosterone levels in umbilical cord blood.
        J. Obstet. Gynaecol. 2011; 31: 697-702
        • van de Beek C.
        • Thijssen J.H.
        • Cohen-Kettenis P.T.
        • van Goozen S.H.
        • Buitelaar J.K.
        Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord serum: what is the best source of information to investigate the effects of fetal hormonal exposure?.
        Horm. Behav. 2004; 46: 663-669
        • Furuhashi N.
        • Suzuki M.
        • Fukaya T.
        • Kono H.
        • Shinkawa O.
        • Tachibana Y.
        • Takahashi T.
        Concentrations of luteinizing hormone-human chorionic gonadotropin, beta subunit of human chorionic gonadotropin, follicle-stimulating hormone, estradiol, cortisol, and testosterone in cord sera and their correlations.
        Am. J. Obstet. Gynecol. 1982; 143: 918-921
        • Isensee J.
        • Witt H.
        • Pregla R.
        • Hetzer R.
        • Regitz-Zagrosek V.
        • Noppinger P.R.
        Sexually dimorphic gene expression in the heart of mice and men.
        J. Mol. Med. (Berl). 2008; 86: 61-74
        • Vawter M.P.
        • Evans S.
        • Choudary P.
        • Tomita H.
        • Meador-Woodruff J.
        • Molnar M.
        • Li J.
        • Lopez J.F.
        • Myers R.
        • Cox D.
        • Watson S.J.
        • Akil H.
        • Jones E.G.
        • Bunney W.E.
        Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes.
        Neuropsychopharmacology. 2004; 29: 373-384
        • Berchtold N.C.
        • Cribbs D.H.
        • Coleman P.D.
        • Rogers J.
        • Head E.
        • Kim R.
        • Beach T.
        • Miller C.
        • Troncoso J.
        • Trojanowski J.Q.
        • Zielke H.R.
        • Cotman C.W.
        Gene expression changes in the course of normal brain aging are sexually dimorphic.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 15605-15610
        • Hager R.
        • Cheverud J.M.
        • Leamy L.J.
        • Wolf J.B.
        Sex dependent imprinting effects on complex traits in mice.
        BMC Evol. Biol. 2008; 8: 303
        • Gregg C.
        • Zhang J.
        • Butler J.E.
        • Haig D.
        • Dulac C.
        Sex-specific parent-of-origin allelic expression in the mouse brain.
        Science. 2010; 329: 682-685
        • Evangelista A.M.
        • Deschamps A.M.
        • Liu D.
        • Raghavachari N.
        • Murphy E.
        miR-222 contributes to sex-dimorphic cardiac eNOS expression via ets-1.
        Physiol. Genomics. 2013; 45: 493-498
        • Yang X.
        • Schadt E.E.
        • Wang S.
        • Wang H.
        • Arnold A.P.
        • Ingram-Drake L.
        • Drake T.A.
        • Lusis A.J.
        Tissue-specific expression and regulation of sexually dimorphic genes in mice.
        Genome Res. 2006; 16: 995-1004
        • Glass C.K.
        • Atherosclerosis Witztum JL.
        The road ahead.
        Cell. 2001; 104: 503-516
        • Oertelt-Prigione S.
        The influence of sex and gender on the immune response.
        Autoimmun. Rev. 2012; 11: A479-A485
        • Nussinovitch U.
        • Shoenfeld Y.
        The role of gender and organ specific autoimmunity.
        Autoimmun. Rev. 2012; 11: A377-A385
        • Gleicher N.
        • Barad D.H.
        Gender as risk factor for autoimmune diseases.
        J. Autoimmun. 2007; 28: 1-6
        • Bouman A.
        • Heineman M.J.
        • Faas M.M.
        Sex hormones and the immune response in humans.
        Hum. Reprod. Update. 2005; 11: 411-423
        • Cutolo M.
        • Brizzolara R.
        • Atzeni F.
        • Capellino S.
        • Straub R.H.
        • Puttini P.C.
        The immunomodulatory effects of estrogens: clinical relevance in immune-mediated rheumatic diseases.
        Ann. N. Y. Acad. Sci. 2010; 1193: 36-42
        • McCormick S.M.
        • Eskin S.G.
        • McIntire L.V.
        • Teng C.L.
        • Lu C.M.
        • Russell C.G.
        • Chittur K.K.
        DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells.
        Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 8955-8960
        • Fledderus J.O.
        • van Thienen J.V.
        • Boon R.A.
        • Dekker R.J.
        • Rohlena J.
        • Volger O.L.
        • Bijnens A.P.
        • Daemen M.J.
        • Kuiper J.
        • van Berkel T.J.
        • Pannekoek H.
        • Horrevoets A.J.
        Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2.
        Blood. 2007; 109: 4249-4257
        • Matarrese P.
        • Colasanti T.
        • Ascione B.
        • Margutti P.
        • Franconi F.
        • Alessandri C.
        • Conti F.
        • Riccieri V.
        • Rosano G.
        • Ortona E.
        • Malorni W.
        Gender disparity in susceptibility to oxidative stress and apoptosis induced by autoantibodies specific to RLIP76 in vascular cells.
        Antioxid. Redox Signal. 2011; 15: 2825-2836
        • Arnold A.P.
        • Lusis A.J.
        Understanding the sexome: measuring and reporting sex differences in gene systems.
        Endocrinology. 2012; 153: 2551-2555
        • Tian Y.
        • Stamova B.
        • Jickling G.C.
        • et al.
        Effects of gender on gene expression in the blood of ischemic stroke patients.
        J. Cereb. Blood Flow Metab. 2012; 32: 780-791
        • Lista P.
        • Straface E.
        • Brunelleschi S.
        • Franconi F.
        • Malorni W.
        On the role of autophagy in human diseases: a gender perspective.
        J. Cell. Mol. Med. 2011; 15: 1443-1557
        • Du L.
        • Hickey R.W.
        • Bayir H.
        • Watkins S.C.
        • Tyurin V.A.
        • Guo F.
        • Kochanek P.M.
        • Jenkins L.W.
        • Ren J.
        • Gibson G.
        • Chu C.T.
        • Kagan V.E.
        • Clark R.S.
        Starving neurons show sex difference in autophagy.
        J. Biol. Chem. 2009; 284: 2383-2396
        • Pierdominici M.
        • Ortona E.
        • Franconi F.
        • Caprio M.
        • Straface E.
        • Malorni W.
        Gender specific aspects of cell death in the cardiovascular system.
        Curr. Pharm. Des. 2011; 17: 1046-1055
        • Straface E.
        • Vona R.
        • Gambardella L.
        • Ascione B.
        • Marino M.
        • Bulzomi P.
        • Canu S.
        • Coinu R.
        • Rosano G.
        • Malorni W.
        • Franconi F.
        Cell sex determines anoikis resistance in vascular smooth muscle cells.
        FEBS Lett. 2009; 583: 3448-3454
        • Addis R.
        • Campesi I.
        • Fois M.
        • Capobianco G.
        • Dessole S.
        • Fenu G.
        • Montella A.
        • Cattaneo M.G.
        • Vicentini L.M.
        • Franconi F.
        Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the phenotype of male and female cells.
        Biol. Sex Differ. 2014; 5: 18https://doi.org/10.1186/s13293-014-0018-2