Advertisement
Research Article| Volume 240, ISSUE 2, P544-549, June 2015

Comparison of angiotensin-(1–7), losartan and their combination on atherosclerotic plaque formation in apolipoprotein E knockout mice

  • Author Footnotes
    1 The first two authors contributed equally to this work.
    Jianmin Yang
    Footnotes
    1 The first two authors contributed equally to this work.
    Affiliations
    The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, PR China
    Search for articles by this author
  • Author Footnotes
    1 The first two authors contributed equally to this work.
    Yu Sun
    Footnotes
    1 The first two authors contributed equally to this work.
    Affiliations
    Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
    Search for articles by this author
  • Mei Dong
    Affiliations
    The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, PR China
    Search for articles by this author
  • Xiaoyan Yang
    Affiliations
    The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, PR China
    Search for articles by this author
  • Xiao Meng
    Affiliations
    The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, PR China
    Search for articles by this author
  • Rongrong Niu
    Affiliations
    Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
    Search for articles by this author
  • Juan Guan
    Affiliations
    Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
    Search for articles by this author
  • Yun Zhang
    Correspondence
    Corresponding authors. Qilu Hospital, Shandong University, No.107, Wen Hua Xi Road, Jinan, Shandong, 250012, PR China.
    Affiliations
    The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, PR China
    Search for articles by this author
  • Cheng Zhang
    Correspondence
    Corresponding authors. Qilu Hospital, Shandong University, No.107, Wen Hua Xi Road, Jinan, Shandong, 250012, PR China.
    Affiliations
    The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, PR China
    Search for articles by this author
  • Author Footnotes
    1 The first two authors contributed equally to this work.

      Highlights

      • We first compare the effect of ARB and Ang-(1–7) and the combinatory effect on atherosclerosis.
      • The effects of Ang-(1–7) and losartan on early atherosclerotic plaque formation were equivalent.
      • Combined Ang-(1–7) and losartan was more effective in attenuating atherosclerosis than Ang-(1–7) or losartan alone.

      Abstract

      Aims

      Inhibition of the classical renin-angiotensin system (RAS) has been proved to reduce atherosclerosis. Recently, angiotensin-(1–7) [Ang-(1–7)], a new component of RAS, has been shown to attenuate atherosclerosis formation. However, direct comparison of Ang-(1–7) and angiotensin II type 1 receptor blocker (ARB) on atherogenesis is sparse. Here, we investigated whether large dose of Ang-(1–7) and losartan are equivalent or the combination of both is superior in reducing atherosclerotic plaque formation.

      Methods and results

      In vivo, we established an atherosclerosis model in ApoE–/– mice. All mice were fed a high fat diet during experiments. Mice were divided into control, Ang-(1–7), losartan, Ang-(1–7)+losartan groups for 4 weeks treatment. Ang-(1–7) did not change the blood pressure (BP) levels, while losartan produced a significant decrease in systolic BP. The attenuation of Ang-(1–7) and losartan in atherosclerosis plaque formation was similar. However, the decrease of atherosclerosis in mice with combination of Ang-(1–7) and losartan was more remarkable relative to that of Ang-(1–7) or losartan alone. The decreases of macrophages infiltration, superoxide production and improvement of endothelium function in aortic lesions were more significant in combination group. In vitro study, we found that combination of Ang-(1–7) and losartan notably inhibited VSMCs proliferation and migration.

      Conclusions

      The anti-atherosclerosis effects of Ang-(1–7) and losartan in early lesion formation were equivalent. Combination use of both agents further enhanced the beneficial effects. Ang-(1–7) might add additional beneficial effect for patients with adequate ARB treatment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Duprez D.A.
        Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review.
        J. Hypertens. 2006; 24: 983-991
        • Lu H.
        • Balakrishnan A.
        • Howatt D.A.
        • Wu C.
        • Charnigo R.
        • Liau G.
        • Cassis L.A.
        • Daugherty A.
        Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis.
        Br. J. Pharmacol. 2012; 165: 2000-2008
        • Blessing E.
        • Preusch M.
        • Kranzhofer R.
        • Kinscherf R.
        • Marx N.
        • Rosenfeld M.E.
        • Isermann B.
        • Weber C.M.
        • Kreuzer J.
        • Grafe J.
        • Katus H.A.
        • Bea F.
        Anti-atherosclerotic properties of telmisartan in advanced atherosclerotic lesions in apolipoprotein E deficient mice.
        Atherosclerosis. 2008; 199: 295-303
        • Jiang F.
        • Yang J.
        • Zhang Y.
        • Dong M.
        • Wang S.
        • Zhang Q.
        • Liu F.F.
        • Zhang K.
        • Zhang C.
        Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets.
        Nat. Rev. Cardiol. 2014; 11: 413-426
        • Yang J.M.
        • Dong M.
        • Meng X.
        • Zhao Y.X.
        • Yang X.Y.
        • Liu X.L.
        • Hao P.P.
        • Li J.J.
        • Wang X.P.
        • Zhang K.
        • Gao F.
        • Zhao X.Q.
        • Zhang M.X.
        • Zhang Y.
        • Zhang C.
        Angiotensin-(1–7) dose-dependently inhibits atherosclerotic lesion formation and enhances plaque stability by targeting vascular cells.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1978-1985
        • McKinney C.A.
        • Fattah C.
        • Loughrey C.M.
        • Milligan G.
        • Nicklin S.A.
        Angiotensin-(1–7) and angiotensin-(1–9): function in cardiac and vascular remodelling.
        Clin. Sci. (London). 2014; 126: 815-827
        • Bomback A.S.
        • Toto R.
        Dual blockade of the renin-angiotensin-aldosterone system: beyond the ACE inhibitor and angiotensin-II receptor blocker combination.
        Am. J. Hypertens. 2009; 22: 1032-1040
        • Xu C.
        • Ding W.
        • Zhang M.
        • Gu Y.
        Protective effects of angiotensin-(1–7) administrated with an angiotensin-receptor blocker in a rat model of chronic kidney disease.
        Nephrol. (Carlton). 2013; 18: 761-769
        • Tesanovic S.
        • Vinh A.
        • Gaspari T.A.
        • Casley D.
        • Widdop R.E.
        Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1606-1613
        • Lovren F.
        • Pan Y.
        • Quan A.
        • Teoh H.
        • Wang G.
        • Shukla P.C.
        • Levitt K.S.
        • Oudit G.Y.
        • Al-Omran M.
        • Stewart D.J.
        • Slutsky A.S.
        • Peterson M.D.
        • Backx P.H.
        • Penninger J.M.
        • Verma S.
        Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 295: H1377-H1384
        • Petersen E.J.
        • Miyoshi T.
        • Yuan Z.
        • Hirohata S.
        • Li J.Z.
        • Shi W.
        • Angle J.F.
        siRNA silencing reveals role of vascular cell adhesion molecule-1 in vascular smooth muscle cell migration.
        Atherosclerosis. 2008; 198: 301-306
        • Zhang F.
        • Hu Y.
        • Xu Q.
        • Ye S.
        Different effects of angiotensin II and angiotensin-(1–7) on vascular smooth muscle cell proliferation and migration.
        PLoS One. 2010; 5 (e12323)
        • Lee S.J.
        • Choi E.K.
        • Seo K.W.
        • Bae J.U.
        • Park S.Y.
        • Kim C.D.
        TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium.
        PLoS One. 2014; 9 (e104588)
        • Pfeffer M.A.
        • McMurray J.J.
        • Velazquez E.J.
        • Rouleau J.L.
        • Kober L.
        • Maggioni A.P.
        • Solomon S.D.
        • Swedberg K.
        • Van de Werf F.
        • White H.
        • Leimberger J.D.
        • Henis M.
        • Edwards S.
        • Zelenkofske S.
        • Sellers M.A.
        • Califf R.M.
        Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both.
        N. Engl. J. Med. 2003; 349: 1893-1906
        • Yano H.
        • Hibi K.
        • Nozawa N.
        • Ozaki H.
        • Kusama I.
        • Ebina T.
        • Kosuge M.
        • Tsukahara K.
        • Okuda J.
        • Morita S.
        • Umemura S.
        • Kimura K.
        Effects of valsartan, an angiotensin II receptor blocker, on coronary atherosclerosis in patients with acute myocardial infarction who receive an angiotensin-converting enzyme inhibitor.
        Circ. J. 2012; 76: 1442-1451
        • Yusuf S.
        • Teo K.K.
        • Pogue J.
        • Dyal L.
        • Copland I.
        • Schumacher H.
        • Dagenais G.
        • Sleight P.
        • Anderson C.
        Telmisartan, ramipril, or both in patients at high risk for vascular events.
        N. Engl. J. Med. 2008; 358: 1547-1559
        • van Diepen J.A.
        • Berbee J.F.
        • Havekes L.M.
        • Rensen P.C.
        Interactions between inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis.
        Atherosclerosis. 2013; 228: 306-315
        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • Gutierrez E.
        • Flammer A.J.
        • Lerman L.O.
        • Elizaga J.
        • Lerman A.
        • Fernandez-Aviles F.
        Endothelial dysfunction over the course of coronary artery disease.
        Eur. Heart J. 2013; 34: 3175-3181
        • Prasad A.
        • Tupas-Habib T.
        • Schenke W.H.
        • Mincemoyer R.
        • Panza J.A.
        • Waclawin M.A.
        • Ellahham S.
        • Quyyumi A.A.
        Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis.
        Circulation. 2000; 101: 2349-2354
        • Tallant E.A.
        • Clark M.A.
        Molecular mechanisms of inhibition of vascular growth by angiotensin-(1–7).
        Hypertension. 2003; 42: 574-579
        • Strawn W.B.
        • Ferrario C.M.
        • Tallant E.A.
        Angiotensin-(1–7) reduces smooth muscle growth after vascular injury.
        Hypertension. 1999; 33: 207-211
        • Walters P.E.
        • Gaspari T.A.
        • Widdop R.E.
        Angiotensin-(1–7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats.
        Hypertension. 2005; 45: 960-966
        • Bosnyak S.
        • Jones E.S.
        • Christopoulos A.
        • Aguilar M.I.
        • Thomas W.G.
        • Widdop R.E.
        Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors.
        Clin. Sci. (London). 2011; 121: 297-303
        • Ferrario C.M.
        • Varagic J.
        The ANG-(1–7)/ACE2/mas axis in the regulation of nephron function.
        Am. J. Physiol. Ren. Physiol. 2010; 298: F1297-F1305
        • Shi Y.
        • Lo C.S.
        • Padda R.
        • Abdo S.
        • Chenier I.
        • Filep J.G.
        • Ingelfinger J.R.
        • Zhang S.L.
        • Chan J.S.
        Ang 1–7 prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and mas receptor expression in diabetic mice.
        Clin. Sci. (London). 2015; 128: 649-663
        • Iwai M.
        • Chen R.
        • Li Z.
        • Shiuchi T.
        • Suzuki J.
        • Ide A.
        • Tsuda M.
        • Okumura M.
        • Min L.J.
        • Mogi M.
        • Horiuchi M.
        Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice.
        Circulation. 2005; 112: 1636-1643
        • Jawien J.
        • Toton-Zuranska J.
        • Gajda M.
        • Niepsuj A.
        • Gebska A.
        • Kus K.
        • Suski M.
        • Pyka-Fosciak G.
        • Nowak B.
        • Guzik T.J.
        • Marcinkiewicz J.
        • Olszanecki R.
        • Korbut R.
        Angiotensin-(1–7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice.
        J. Physiol. Pharmacol. 2012; 63: 77-85
        • Tesanovic S.
        • Vinh A.
        • Gaspari T.A.
        • Casley D.
        • Widdop R.E.
        Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1606-1613
        • Ohshima K.
        • Mogi M.
        • Nakaoka H.
        • Iwanami J.
        • Min L.J.
        • Kanno H.
        • Tsukuda K.
        • Chisaka T.
        • Bai H.Y.
        • Wang X.L.
        • Ogimoto A.
        • Higaki J.
        • Horiuchi M.
        Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1–7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade.
        Hypertension. 2014; 63: e53-59
        • Valente A.J.
        • Yoshida T.
        • Murthy S.N.
        • Sakamuri S.S.
        • Katsuyama M.
        • Clark R.A.
        • Delafontaine P.
        • Chandrasekar B.
        Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18.
        Am. J. Physiol. Heart Circ. Physiol. 2012; 303: H282-H296
        • Dong B.
        • Yu Q.T.
        • Dai H.Y.
        • Gao Y.Y.
        • Zhou Z.L.
        • Zhang L.
        • Jiang H.
        • Gao F.
        • Li S.Y.
        • Zhang Y.H.
        • Bian H.J.
        • Liu C.X.
        • Wang N.
        • Xu H.
        • Pan C.M.
        • Song H.D.
        • Zhang C.
        • Zhang Y.
        Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy.
        J. Am. Coll. Cardiol. 2012; 59: 739-747

      Linked Article