Advertisement
Research Article| Volume 240, ISSUE 2, P324-329, June 2015

Whole exome sequencing combined with integrated variant annotation prediction identifies asymptomatic Tangier disease with compound heterozygous mutations in ABCA1 gene

      Highlights

      • Whole exome sequencing successfully identified asymptomatic Tangier disease.
      • Such comprehensive approach is useful to determine causative variants.
      • Patients with HDL deficiency have great diversities in their clinical phenotype.

      Abstract

      Objective

      Molecular diagnosis for subjects with extremely low HDL-C through candidate-gene approaches requires huge effort. Whole exome-sequencing (WES) has already shown approximately ∼30% success in the diagnosis of Mendelian disorders. Moreover, novel in silico prediction software for the pathogenicity of novel missense variants named Combined Annotation Dependent Depletion (CADD) has recently been developed, enabling the objective integration of many diverse annotations into a single measure (C-score) for each variant. Here, we investigated whether WES combined with integrated variant annotation prediction could facilitate the molecular diagnosis of this rare condition.

      Methods

      WES was performed on 8 individuals including 2 individuals exhibiting extremely low HDL-C (2 mg/dl and 6 mg/dl), 2 unaffected family members, and 4 unrelated individuals as controls. We filtered out the following variants: 1) Benign variants predicted by SnpEff; 2) Minor allele frequency (MAF) > 1%; 3) Segregation unmatched for the recessive form of inheritance; 4) C-score < 10.

      Results

      Among 305,202 variants found in those individuals, we found 21,708 nonsense, missense, or splice site variants, of which 5192 were rare (MAF ≤ 1% or not reported). Filtering assuming a recessive pattern of inheritance, combined with the use of the C-score, successfully narrowed down the candidates to compound heterozygous mutations in the ABCA1 gene (c.6230C > A or p.P2077H/c.6137G > A or p.S2046N, and c.2842G > A or p.G948R/c.1130C > T or p.P377L).

      Conclusions

      WES combined with integrated variant annotation prediction successfully identified asymptomatic Tangier disease with novel ABCA1 mutations. This comprehensive approach is useful to determine causative variants, especially in recessive inherited diseases.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Genest Jr., J.J.
        • Martin-Munley S.S.
        • McNamara J.R.
        • Ordovas J.M.
        • Jenner J.
        • Myers R.H.
        • et al.
        Familial lipoprotein disorders in patients with premature coronary artery disease.
        Circulation. 1992; 85: 2025-2033
        • Kannel W.B.
        High density lipoproteins: epidemiologic profile and risks of coronary artery disease.
        Am. J. Cardiol. 1983; 52: 9B-12B
        • Okamura T.
        • Hayakawa T.
        • Kadowaki T.
        • Kita Y.
        • Okayama A.
        • Ueshima H.
        • NIPPON DATA90 Research Group
        The inverse relationship between serum high-density lipoprotein cholesterol level and all-cause mortality in a 9.6-year follow-up study in the Japanese general population.
        Atherosclerosis. 2006; 184: 143-150
        • Kathiresan S.
        • Manning A.K.
        • Demissie S.
        • D'Agostino R.B.
        • Surti A.
        • Guiducci C.
        • et al.
        A genome-wide association study for blood lipid phenotypes in the Framingham heart study.
        BMC Med. Genet. 2007; 8: S17
        • Willer C.J.
        • Schmidt E.M.
        • Sengupta S.
        • Peloso G.M.
        • Gustafsson S.
        • et al.
        • Global Lipids Genetics Consortium
        Discovery and refinement of loci associated with lipid levels.
        Nat. Genet. 2013; 45: 1274-1283
        • Inazu A.
        • Brown M.L.
        • Hesler C.B.
        • Agellon L.B.
        • Koizumi J.
        • Takata K.
        • et al.
        Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation.
        N. Engl. J. Med. 1990; 323: 1234-1238
        • de Lemos A.S.
        • Wolfe M.L.
        • Long C.J.
        • Sivapackianathan R.
        • Rader D.J.
        Identification of genetic variants in endothelial lipase in persons with elevated high-density lipoprotein cholesterol.
        Circulation. 2002; 106: 1321-1326
        • Norum R.A.
        • Lakier J.B.
        • Goldstein S.
        • Angel A.
        • Goldberg R.B.
        • Block W.D.
        • et al.
        Familial deficiency of apolipoproteins A-I and C-III and precocious coronary-artery disease.
        N. Engl. J. Med. 1982; 306: 1513-1519
        • Fredrickson D.S.
        The inheritance of high density lipoprotein deficiency (Tangier disease).
        J. Clin. Invest. 1964; 43: 228-236
        • Norum K.R.
        • Gjone E.
        The influence of plasma from patients with familial plasma lecithin: cholesterol acyltransferase deficiency on the lipid pattern of erythrocytes.
        Scand. J. Clin. Lab. Invest. 1968; 22: 94-98
        • Rader D.J.
        • de Goma E.M.
        Approach to the patient with extremely low HDL-cholesterol.
        J. Clin. Endocrinol. Metab. 2012; 97: 3399-3407
        • Kircher M.
        • Witten D.M.
        • Jain P.
        • O'Roak B.J.
        • Cooper G.M.
        • Shendure J.
        A general framework for estimating the relative pathogenicity of human genetic variants.
        Nat. Genet. 2014; 46: 310-315
        • Allain C.C.
        • Poon L.S.
        • Chan C.S.
        • Richmond W.
        • Fu P.C.
        Enzymatic determination of total serum cholesterol.
        Clin. Chem. 1974; 20: 470-475
        • Sugiura M.
        • Oikawa T.
        • Hirano K.
        • Maeda H.
        • Yoshimura H.
        • Sugiyama M.
        • et al.
        A simple colorimetric method for determination of serum triglycerides with lipoprotein lipase and glycerol dehydrogenase.
        Clin. Chim. Acta. 1977; 81: 125-130
        • Finley P.R.
        • Schifman R.B.
        • Williams R.J.
        • Lichti D.A.
        Cholesterol in high-density lipoprotein: use of Mg2+/dextran sulfate in its enzymic measurement.
        Clin. Chem. 1978; 24: 931-933
        • Kiyohara T.
        • Kiriyama R.
        • Zamma S.
        • Inazu A.
        • Koizumi J.
        • Mabuchi H.
        Enzyme immunoassay for cholesteryl ester transfer protein in human serum.
        Clin. Chim. Acta. 1998; 271: 109-118
        • Nagasaki T.
        • Akanuma Y.
        A new colorimetric method for the determination of plasma lecithin-cholesterol acyltransferase activity.
        Clin. Chim. Acta. 1977; 75: 371-375
        • McKenna A.
        • Hanna M.
        • Banks E.
        • Sivachenko A.
        • Cibulskis K.
        • Kernytsky A.
        • et al.
        The genome analysis toolkit: a Map reduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20: 1297-1303
        • DePristo M.A.
        • Banks E.
        • Poplin R.
        • Garimella K.V.
        • Maguire J.R.
        • Hartl C.
        • et al.
        A framework for variation discovery and genotyping using next-generation DNA sequencing data.
        Nat. Genet. 2011; 43: 491-498
        • Cingolani P.
        • Platts A.
        • Wang le L.
        • Coon M.
        • Nguyen T.
        • Wang L.
        • et al.
        A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.
        Fly. (Austin). 2012; 6: 80-92
        • Tada H.
        • Kawashiri M.A.
        • Ikewaki K.
        • Terao Y.
        • Noguchi T.
        • Nakanishi C.
        • et al.
        Altered metabolism of low-density lipoprotein and very-low-density lipoprotein remnant in autosomal recessive hypercholesterolemia: results from stable isotope kinetic study in vivo.
        Circ. Cardiovasc Genet. 2012; 5: 35-41
        • Kitaoka M.
        • Matsuo H.
        • Taniguchi N.
        • Ozaki T.
        • Kaneda S.
        • Enda E.
        Jpn. J. Med. Ultrason. 2009; 36: 510-518
        • Abecasis G.R.
        • Altshuler D.
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • et al.
        • 1000 Genomes Project Consortium
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073
      1. NHLBI Exome Sequencing Project (ESP). Exome Variant Server. (http://evs.gs.washington.edu/EVS/).

      2. Japanese Genetic Variation Consortium. A reference database of genetic variations in Japanese population. (http://www.genome.med.kyoto-u.ac.jp/SnpDB).

        • Gnirke A.
        • Melnikov A.
        • Maguire J.
        • Rogov P.
        • LeProust E.M.
        • Brockman W.
        • et al.
        Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing.
        Nat. Biotechnol. 2009; 27: 182-189
        • Ng S.B.
        • Turner E.H.
        • Robertson P.D.
        • Flygare S.D.
        • Bigham A.W.
        • Lee C.
        • et al.
        Targeted capture and massively parallel sequencing of 12 human exomes.
        Nature. 2009; 461: 272-276
        • Mamanova L.
        • Coffey A.J.
        • Scott C.E.
        • Kozarewa I.
        • Turner E.H.
        • Kumar A.
        • et al.
        Target-enrichment strategies for next-generation sequencing.
        Nat. Methods. 2010; 7: 111-118
        • Yang Y.
        • Muzny D.M.
        • Reid J.G.
        • Bainbridge M.N.
        • Willis A.
        • Ward P.A.
        • et al.
        Clinical whole-exome sequencing for the diagnosis of Mendelian disorders.
        N. Engl. J. Med. 2013; 369: 1502-1511
        • Miller M.
        • Rhyne J.
        • Hamlette S.
        • Birnbaum J.
        • Rodriguez A.
        Genetics of HDL regulation in humans.
        Curr. Opin. Lipidol. 2003; 14: 273-279
        • Frikke-Schmidt R.
        • Nordestgaard B.G.
        • Jensen G.B.
        • Tybjærg-Hansen A.
        Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population.
        J. Clin. Invest. 2004; 114: 1343-1353
        • Fasano T.
        • Zanoni P.
        • Rabacchi C.
        • Pisciotta L.
        • Favari E.
        • Adorni M.P.
        • et al.
        Novel mutations of ABCA1 transporter in patients with Tangier disease and familial HDL deficiency.
        Mol. Genet. Metab. 2012; 107: 534-541
        • Brooks-Wilson A.
        • Marcil M.
        • Clee S.M.
        • Zhang L.H.
        • Roomp K.
        • van Dam M.
        • et al.
        Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency.
        Nat. Genet. 1999; 22: 336-345