Advertisement

Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis

      Highlights

      • We describe atherosclerotic animal models in which flow or local shear stress is manipulated.
      • We give an explanation on the created flow field within each model.
      • We describe the biomechanical terminology of the most common vascular flow phenomena.
      • This paper can guide researchers in deciding which model to use for their research.

      Abstract

      Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Asakura T.
        • Karino T.
        Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries.
        Circ. Res. 1990; 66: 1045-1066https://doi.org/10.1161/01.RES.66.4.1045
        • Eshtehardi P.
        • McDaniel M.C.
        • Suo J.
        • Dhawan S.S.
        • Timmins L.H.
        • Binongo J.N.G.
        • et al.
        Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease.
        J. Am. Heart Assoc. 2012; 1: e002543https://doi.org/10.1161/JAHA.112.002543
        • Salzar R.S.
        • Thubrikart M.J.
        • Eppink R.T.
        Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis.
        J. Biomech. 1995; 28: 1333-1340
        • Malek A.M.
        Hemodynamic Shear Stress and Its Role in Atherosclerosis.
        JAMA. 1999; 282: 2035-2042https://doi.org/10.1001/jama.282.21.2035
        • Cheng C.
        • Helderman F.
        • Tempel D.
        • Segers D.
        • Hierck B.
        • Poelmann R.
        • et al.
        Large variations in absolute wall shear stress levels within one species and between species.
        Atherosclerosis. 2007; 195: 225-235https://doi.org/10.1016/j.atherosclerosis.2006.11.019
        • Tzima E.
        • Irani-Tehrani M.
        • Kiosses W.B.
        • Dejana E.
        • Schultz D.A.
        • Engelhardt B.
        • et al.
        A mechanosensory complex that mediates the endothelial cell response to fluid shear stress.
        Nature. 2005; 437: 426-431https://doi.org/10.1038/nature03952
        • Conway D.E.
        • Schwartz M.A.
        Flow-dependent cellular mechanotransduction in atherosclerosis.
        J. Cell Sci. 2013; 126: 5101-5109https://doi.org/10.1242/jcs.138313
        • Van der Heiden K.
        • Egorova A.D.
        • Poelmann R.E.
        • Wentzel J.J.
        • Hierck B.P.
        Role for primary cilia as flow detectors in the cardiovascular system.
        Int. Rev. Cell Mol. Biol. 2011; 290: 87-119https://doi.org/10.1016/B978-0-12-386037-8.00004-1
        • Davies P.F.
        • Civelek M.
        • Fang Y.
        • Fleming I.
        The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo.
        Cardiovasc. Res. 2013; 99: 315-327https://doi.org/10.1093/cvr/cvt101
        • Riha G.M.
        • Lin P.H.
        • Lumsden A.B.
        • Yao Q.
        • Chen C.
        Roles of hemodynamic forces in vascular cell differentiation.
        Ann. Biomed. Eng. 2005; 33: 772-779
        • Boon R.A.
        • Horrevoets A.J.G.
        Key transcriptional regulators of the vasoprotective effects of shear stress.
        Hamostaseologie. 2009; 29 (41–3): 39-40
        • Dekker R.J.
        • van Soest S.
        • Fontijn R.D.
        • Salamanca S.
        • de Groot P.G.
        • VanBavel E.
        • et al.
        Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2).
        Blood. 2002; 100: 1689-1698https://doi.org/10.1182/blood-2002-01-0046
        • Nayak L.
        • Lin Z.
        • Jain M.K.
        “Go with the flow”: how Krüppel-like factor 2 regulates the vasoprotective effects of shear stress.
        Antioxid. Redox Signal. 2011; 15: 1449-1461https://doi.org/10.1089/ars.2010.3647
        • Dekker R.J.
        • Boon R.A.
        • Rondaij M.G.
        • Kragt A.
        • Volger O.L.
        • Elderkamp Y.W.
        • et al.
        KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium.
        Blood. 2006; 107: 4354-4363https://doi.org/10.1182/blood-2005-08-3465
        • Boon R.A.
        • Fledderus J.O.
        • Volger O.L.
        • van Wanrooij E.J.A.
        • Pardali E.
        • Weesie F.
        • et al.
        KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 532-539https://doi.org/10.1161/01.ATV.0000256466.65450.ce
        • SenBanerjee S.
        • Lin Z.
        • Atkins G.B.
        • Greif D.M.
        • Rao R.M.
        • Kumar A.
        • et al.
        KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation.
        J. Exp. Med. 2004; 199: 1305-1315https://doi.org/10.1084/jem.20031132
        • Lin Z.
        • Kumar A.
        • SenBanerjee S.
        • Staniszewski K.
        • Parmar K.
        • Vaughan D.E.
        • et al.
        Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function.
        Circ. Res. 2005; 96: e48-57https://doi.org/10.1161/01.RES.0000159707.05637.a1
        • Kietadisorn R.
        • Juni R.P.
        • Moens A.L.
        Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities.
        Am. J. Physiol. Endocrinol. Metab. 2012; 302: E481-E495https://doi.org/10.1152/ajpendo.00540.2011
        • Landmesser U.
        • Dikalov S.
        • Price S.R.
        • McCann L.
        • Fukai T.
        • Holland S.M.
        • et al.
        Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.
        J. Clin. Invest. 2003; 111: 1201-1209https://doi.org/10.1172/JCI14172
        • Yamawaki H.
        • Lehoux S.
        • Berk B.C.
        Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo.
        Circulation. 2003; 108: 1619-1625https://doi.org/10.1161/01.CIR.0000089373.49941.C4
        • Huang Y.H.
        • Rönnelid J.
        • Frostegård J.
        Oxidized LDL induces enhanced antibody formation and MHC class II-dependent IFN-gamma production in lymphocytes from healthy individuals.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1577-1583
        • Parthasarathy S.
        • Printz D.J.
        • Boyd D.
        • Joy L.
        • Steinberg D.
        Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor.
        Arterioscler. Thromb. Vasc. Biol. 1986; 6: 505-510https://doi.org/10.1161/01.ATV.6.5.505
        • Glagov S.
        • Weisenberg E.
        • Zarins C.K.
        • Stankunavicius R.
        • Kolettis G.J.
        Compensatory enlargement of human atherosclerotic coronary arteries.
        N. Engl. J. Med. 1987; 316: 1371-1375https://doi.org/10.1056/NEJM198705283162204
        • Wentzel J.J.
        • Chatzizisis Y.S.
        • Gijsen F.J.H.
        • Giannoglou G.D.
        • Feldman C.L.
        • Stone P.H.
        Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions.
        Cardiovasc. Res. 2012; 96: 234-243https://doi.org/10.1093/cvr/cvs217
        • Koskinas K.C.
        • Feldman C.L.
        • Chatzizisis Y.S.
        • Coskun A.U.
        • Jonas M.
        • Maynard C.
        • et al.
        Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study.
        Circulation. 2010; 121: 2092-2101https://doi.org/10.1161/CIRCULATIONAHA.109.901678
        • Stone P.H.
        • Coskun A.U.
        • Kinlay S.
        • Clark M.E.
        • Sonka M.
        • Wahle A.
        • et al.
        Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study.
        Circulation. 2003; 108: 438-444https://doi.org/10.1161/01.CIR.0000080882.35274.AD
        • Chatzizisis Y.S.
        • Jonas M.
        • Coskun A.U.
        • Beigel R.
        • Stone B.V.
        • Maynard C.
        • et al.
        Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study.
        Circulation. 2008; 117: 993-1002https://doi.org/10.1161/CIRCULATIONAHA.107.695254
        • Gijsen F.J.H.
        • Wentzel J.J.
        • Thury A.
        • Mastik F.
        • Schaar J.A.
        • Schuurbiers J.C.H.
        • et al.
        Strain distribution over plaques in human coronary arteries relates to shear stress.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 295: 1608-1614https://doi.org/10.1152/ajpheart.01081.2007
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • Farb A.
        • Schwartz S.M.
        Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1262-1275https://doi.org/10.1161/01.ATV.20.5.1262
        • Stary H.C.
        • Chandler A.B.
        • Dinsmore R.E.
        • Fuster V.
        • Glagov S.
        • Insull W.
        • et al.
        A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
        Circulation. 1995; 15: 1355-1374
        • Schaar J.A.
        • Muller J.E.
        • Falk E.
        • Virmani R.
        • Fuster V.
        • Serruys P.W.
        • et al.
        Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece.
        Eur. Heart J. 2004; 25: 1077-1082https://doi.org/10.1016/j.ehj.2004.01.002
        • Naghavi M.
        • Libby P.
        • Falk E.
        • Casscells S.W.
        • Litovsky S.
        • Rumberger J.
        • et al.
        From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I.
        Circulation. 2003; 108: 1664-1672https://doi.org/10.1161/01.CIR.0000087480.94275.97
        • Naghavi M.
        • Libby P.
        • Falk E.
        • Casscells S.W.
        • Litovsky S.
        • Rumberger J.
        • et al.
        From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II.
        Circulation. 2003; 108: 1772-1778https://doi.org/10.1161/01.CIR.0000087481.55887.C9
        • Virmani R.
        • Burke A.P.
        • Kolodgie F.D.
        • Farb A.
        Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque.
        J. Interv. Cardiol. 2003; 16: 267-272https://doi.org/10.1034/j.1600-0854.2003.8042.x
        • Moreno P.R.
        • Purushothaman K.R.
        • Fuster V.
        • Echeverri D.
        • Truszczynska H.
        • Sharma S.K.
        • et al.
        Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability.
        Circulation. 2004; 110: 2032-2038https://doi.org/10.1161/01.CIR.0000143233.87854.23
        • Moreno P.R.
        • Purushothaman K.-R.
        • Sirol M.
        • Levy A.P.
        • Fuster V.
        Neovascularization in human atherosclerosis.
        Circulation. 2006; 113: 2245-2252https://doi.org/10.1161/CIRCULATIONAHA.105.578955
        • Baun J.G.
        Vascular Ultrasound: Physics, Instrumentation & Hemodynamics. Illustrate.
        ProSono Publishing, 2010
        • Chiu J.-J.
        • Chien S.
        Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives.
        Physiol. Rev. 2011; 91: 327-387https://doi.org/10.1152/physrev.00047.2009
        • Stein P.D.
        • Sabbah H.N.
        Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves.
        Circ. Res. 1976; 39: 58-65https://doi.org/10.1161/01.RES.39.1.58
        • Kamiya A.
        • Togawa T.
        Adaptive regulation of wall shear stress to flow change in the canine carotid artery.
        Am. J. Physiol. 1980; 239: H14-H21
        • Castier Y.
        • Lehoux S.
        • Hu Y.
        • Foteinos G.
        • Fonteinos G.
        • Tedgui A.
        • et al.
        Characterization of neointima lesions associated with arteriovenous fistulas in a mouse model.
        Kidney Int. 2006; 70: 315-320https://doi.org/10.1038/sj.ki.5001569
        • Castier Y.
        • Brandes R.P.
        • Leseche G.
        • Tedgui A.
        • Lehoux S.
        p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling.
        Circ. Res. 2005; 97: 533-540https://doi.org/10.1161/01.RES.0000181759.63239.21
        • Zarins C.K.
        • Zatina M.A.
        • Giddens D.P.
        • Ku D.N.
        • Glagov S.
        Shear stress regulation of artery lumen diameter in experimental atherogenesis.
        J. Vasc. Surg. 1987; 5: 413-420https://doi.org/10.1016/0741-5214(87)90048-6
        • Nanjo H.
        • Sho E.
        • Komatsu M.
        • Sho M.
        • Zarins C.K.
        • Masuda H.
        Intermittent short-duration exposure to low wall shear stress induces intimal thickening in arteries exposed to chronic high shear stress.
        Exp. Mol. Pathol. 2006; 80: 38-45https://doi.org/10.1016/j.yexmp.2005.04.005
        • Sho M.
        • Sho E.
        • Singh T.M.
        • Komatsu M.
        • Sugita A.
        • Xu C.
        • et al.
        Subnormal shear stress-induced intimal thickening requires medial smooth muscle cell proliferation and migration.
        Exp. Mol. Pathol. 2002; 72: 150-160https://doi.org/10.1006/exmp.2002.2426
        • Sho E.
        • Nanjo H.
        • Sho M.
        • Kobayashi M.
        • Komatsu M.
        • Kawamura K.
        • et al.
        Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress.
        J. Vasc. Surg. 2004; 39: 601-612https://doi.org/10.1016/j.jvs.2003.10.058
        • Zhuang Y.-J.
        • Singh T.M.
        • Zarins C.K.
        • Masuda H.
        Sequential increase and decrease in blood flow stimulates progressive intimal thickening.
        Eur. J. Vasc. Endovasc. Surg. 1998; 16: 301-310
        • Tronc F.
        • Wassef M.
        • Esposito B.
        • Henrion D.
        • Glagov S.
        • Tedgui A.
        Role of NO in flow-induced remodeling of the rabbit common carotid artery.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1256-1262https://doi.org/10.1161/01.ATV.16.10.1256
        • Chen Y.-S.
        • Lu M.-J.
        • Huang H.-S.
        • Ma M.-C.
        Mechanosensitive transient receptor potential vanilloid type 1 channels contribute to vascular remodeling of rat fistula veins.
        J. Vasc. Surg. 2010; 52: 1310-1320https://doi.org/10.1016/j.jvs.2010.05.095
        • Langer S.
        • Heiss C.
        • Paulus N.
        • Bektas N.
        • Mommertz G.
        • Rowinska Z.
        • et al.
        Functional and structural response of arterialized femoral veins in a rodent AV fistula model.
        Nephrol. Dial. Transplant. 2009; 24: 2201-2206https://doi.org/10.1093/ndt/gfp033
        • Manning E.
        • Skartsis N.
        • Orta A.M.
        • Velazquez O.C.
        • Liu Z.-J.
        • Asif A.
        • et al.
        A new arteriovenous fistula model to study the development of neointimal hyperplasia.
        J. Vasc. Res. 2012; 49: 123-131https://doi.org/10.1159/000332327
        • Butterfield A.B.
        • Miller C.W.
        • Lumb W.V.
        • McLeod F.D.
        • Nelson A.W.
        • Histand M.B.
        Inverse effect of chronically elevated blood flow on atherogenesis in miniature swine.
        Atherosclerosis. 1977; 26: 215-224
        • Zou Y.
        • Dietrich H.
        • Hu Y.
        • Metzler B.
        • Wick G.
        • Xu Q.
        Mouse model of venous bypass graft arteriosclerosis.
        Am. J. Pathol. 1998; 153: 1301-1310https://doi.org/10.1016/S0002-9440(10)65675-1
        • Schepers A.
        • de Vries M.R.
        • van Leuven C.J.
        • Grimbergen J.M.
        • Holers V.M.
        • Daha M.R.
        • et al.
        Inhibition of complement component C3 reduces vein graft atherosclerosis in apolipoprotein E3-Leiden transgenic mice.
        Circulation. 2006; 114: 2831-2838https://doi.org/10.1161/CIRCULATIONAHA.106.619502
        • Thim T.
        • Hagensen M.K.
        • Hørlyck A.
        • Drouet L.
        • Paaske W.P.
        • Bøtker H.E.
        • et al.
        Oversized vein grafts develop advanced atherosclerosis in hypercholesterolemic minipigs.
        BMC Cardiovasc. Disord. 2012; 12: 24https://doi.org/10.1186/1471-2261-12-24
        • Wexler B.C.
        • Saroff J.
        Metabolic changes in response to acute cerebral ischemia following unilateral carotid artery ligation in arteriosclerotic versus nonarteriosclerotic rats.
        Stroke. 1970; 1: 38-51https://doi.org/10.1161/01.STR.1.1.38
        • Geary R.L.
        • Kohler T.R.
        • Vergel S.
        • Kirkman T.R.
        • Clowes A.W.
        Time course of flow-induced smooth muscle cell proliferation and intimal thickening in endothelialized baboon vascular grafts.
        Circ. Res. 1994; 74: 14-23https://doi.org/10.1161/01.RES.74.1.14
        • Kohler T.R.
        • Kirkman T.R.
        • Kraiss L.W.
        • Zierler B.K.
        • Clowes A.W.
        Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts.
        Circ. Res. 1991; 69: 1557-1565https://doi.org/10.1161/01.RES.69.6.1557
        • Guyton J.R.
        • Hartley C.J.
        Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter.
        Am. J. Physiol. Heart Circ. Physiol. 1985; 248: H540-H546
        • Kumar A.
        • Lindner V.
        Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2238-2244https://doi.org/10.1161/01.ATV.17.10.2238
        • Chang P.C.
        • Wu H.L.
        • Lin H.C.
        • Wang K.C.
        • Shi G.Y.
        Human plasminogen kringle 1-5 reduces atherosclerosis and neointima formation in mice by suppressing the inflammatory signaling pathway.
        J. Thromb. Haemost. 2010; 8: 194-201https://doi.org/10.1111/j.1538-7836.2009.03671.x
        • Lin W.-L.
        • Chang C.-F.
        • Shi C.-S.
        • Shi G.-Y.
        • Wu H.-L.
        Recombinant lectin-like domain of thrombomodulin suppresses vascular inflammation by reducing leukocyte recruitment via interacting with Lewis Y on endothelial cells.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 2366-2373https://doi.org/10.1161/ATVBAHA.113.301221
        • Kosuge H.
        • Sherlock S.P.
        • Kitagawa T.
        • Dash R.
        • Robinson J.T.
        • Dai H.
        • et al.
        Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes.
        J. Am. Heart Assoc. 2012; 1: e002568https://doi.org/10.1161/JAHA.112.002568
        • Conway R.G.
        • Chernet E.
        • De Rosa D.C.
        • Benschop R.J.
        • Need A.B.
        • Collins E.C.
        • et al.
        Glucose metabolic trapping in mouse arteries: nonradioactive assay of atherosclerotic plaque inflammation applicable to drug discovery.
        PLoS One. 2012; 7: e50349https://doi.org/10.1371/journal.pone.0050349
        • Dimastromatteo J.
        • Broisat A.
        • Perret P.
        • Ahmadi M.
        • Boturyn D.
        • Dumy P.
        • et al.
        In vivo molecular imaging of atherosclerotic lesions in ApoE-/- mice using VCAM-1-specific, 99mTc-labeled peptidic sequences.
        J. Nucl. Med. 2013; 54: 1442-1449https://doi.org/10.2967/jnumed.112.115675
        • Ivan E.
        Expansive arterial remodeling is associated with increased neointimal macrophage foam cell content: the murine model of macrophage-rich carotid artery lesions.
        Circulation. 2002; 105: 2686-2691https://doi.org/10.1161/01.CIR.0000016825.17448.11
        • Kureha F.
        • Satomi-Kobayashi S.
        • Kubo Y.
        • Kinugasa M.
        • Ishida T.
        • Takai Y.
        • et al.
        Nectin-like molecule-5 regulates intimal thickening after carotid artery ligation in mice.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1206-1211https://doi.org/10.1161/ATVBAHA.113.301425
        • Zhou J.
        • Li Y.-S.
        • Nguyen P.
        • Wang K.-C.
        • Weiss A.
        • Kuo Y.-C.
        • et al.
        Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress.
        Circ. Res. 2013; 113: 40-51https://doi.org/10.1161/CIRCRESAHA.113.280883
        • Sugimoto R.
        • Warabi E.
        • Katayanagi S.
        • Sakai S.
        • Uwayama J.
        • Yanagawa T.
        • et al.
        Enhanced neointimal hyperplasia and carotid artery remodelling in sequestosome 1 deficient mice.
        J. Cell Mol. Med. 2010; 14: 1546-1554https://doi.org/10.1111/j.1582-4934.2009.00914.x
        • Da Cunha V.
        • Martin-McNulty B.
        • Vincelette J.
        • Choy D.F.
        • Li W.-W.
        • Schroeder M.
        • et al.
        Angiotensin II induces histomorphologic features of unstable plaque in a murine model of accelerated atherosclerosis.
        J. Vasc. Surg. 2006; 44: 364-371https://doi.org/10.1016/j.jvs.2006.04.033
        • Sasaki T.
        • Kuzuya M.
        • Nakamura K.
        • Cheng X.W.
        • Shibata T.
        • Sato K.
        • et al.
        A simple method of plaque rupture induction in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1304-1309https://doi.org/10.1161/01.ATV.0000219687.71607.f7
        • Aono J.
        • Suzuki J.
        • Iwai M.
        • Horiuchi M.
        • Nagai T.
        • Nishimura K.
        • et al.
        Deletion of the angiotensin II type 1a receptor prevents atherosclerotic plaque rupture in apolipoprotein E-/- mice.
        Arterioscler. Thromb. Vasc. Biol. 2012; 32: 1453-1459https://doi.org/10.1161/ATVBAHA.112.249516
        • Nakamura K.
        • Sasaki T.
        • Wu X.
        • Iguchi A.
        Statin prevents plaque disruption in apoE-knockout mouse model through pleiotropic effect on acute inflammation.
        Atherosclerosis. 2009; 206: 355-361https://doi.org/10.1016/j.atherosclerosis.2009.02.014
        • Mondy J.S.
        • Lindner V.
        • Miyashiro J.K.
        • Berk B.C.
        • Dean R.H.
        • Geary R.L.
        Platelet-derived growth factor ligand and receptor expression in response to altered blood flow.
        In Vivo. Circ. Res. 1997; 81: 320-327https://doi.org/10.1161/01.RES.81.3.320
        • Miyashiro J.K.
        • Poppa V.
        • Berk B.C.
        Flow-induced vascular remodeling in the rat carotid artery diminishes with age.
        Circ. Res. 1997; 81: 311-319https://doi.org/10.1161/01.RES.81.3.311
        • Nam D.
        • Ni C.
        • Rezvan A.
        • Suo J.
        • Budzyn K.
        • Llanos A.
        • et al.
        Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis.
        Am. J. Physiol. Heart Circ. Physiol. 2009; : 1535-1543https://doi.org/10.1152/ajpheart.00510.2009
        • Langille B.L.
        • O'Donnell F.
        Reductions in arterial diameter produced by chronic decreases in blood flow are.
        Science (80-). 1986; 231: 405-407
        • Ishii A.
        • Viñuela F.
        • Murayama Y.
        • Yuki I.
        • Nien Y.L.
        • Yeh D.T.
        • et al.
        Swine model of carotid artery atherosclerosis: experimental induction by surgical partial ligation and dietary hypercholesterolemia.
        AJNR Am. J. Neuroradiol. 2006; 27: 1893-1899
        • Chen Y.-C.
        • Bui A.V.
        • Diesch J.
        • Manasseh R.
        • Hausding C.
        • Rivera J.
        • et al.
        A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling.
        Circ. Res. 2013; 113: 252-265https://doi.org/10.1161/CIRCRESAHA.113.301562
        • Langille B.L.
        • Bendeck M.P.
        • Keeley F.W.
        Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow.
        Am. J. Physiol. 1989; 256: H931-H939
        • Duran-Prado M.
        • Morell M.
        • Delgado-Maroto V.
        • Castaño J.P.
        • Aneiros-Fernandez J.
        • de Lecea L.
        • et al.
        Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation.
        Circ. Res. 2013; 112: 1444-1455https://doi.org/10.1161/CIRCRESAHA.112.300695
        • Redmond E.M.
        • Hamm K.
        • Cullen J.P.
        • Hatch E.
        • Cahill P.A.
        • Morrow D.
        Inhibition of patched-1 prevents injury-induced neointimal hyperplasia.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1960-1964https://doi.org/10.1161/ATVBAHA.113.301843
        • Korshunov V.A.
        • Berk B.C.
        Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 2185-2191https://doi.org/10.1161/01.ATV.0000103120.06092.14
        • Korshunov V.A.
        • Berk B.C.
        Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined.
        Circulation. 2004; 110: 220-226https://doi.org/10.1161/01.CIR.0000134958.88379.2E
        • Shin I.J.
        • Shon S.-M.
        • Schellingerhout D.
        • Park J.-Y.
        • Kim J.-Y.
        • Lee S.K.
        • et al.
        Characterization of partial ligation-induced carotid atherosclerosis model using dual-modality molecular imaging in ApoE knock-out mice.
        PLoS One. 2013; 8: e73451https://doi.org/10.1371/journal.pone.0073451
        • Merino H.
        • Parthasarathy S.
        • Singla D.K.
        Partial ligation-induced carotid artery occlusion induces leukocyte recruitment and lipid accumulation–a shear stress model of atherosclerosis.
        Mol. Cell Biochem. 2013; 372: 267-273https://doi.org/10.1007/s11010-012-1468-7
        • Ni C.-W.
        • Qiu H.
        • Rezvan A.
        • Kwon K.
        • Nam D.
        • Son D.J.
        • et al.
        Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow.
        Blood. 2010; 116: e66-73https://doi.org/10.1182/blood-2010-04-278192
        • Dunn J.
        • Qiu H.
        • Kim S.
        • Jjingo D.
        • Hoffman R.
        • Kim C.W.
        • et al.
        Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis.
        J. Clin. Invest. 2014; 124: 3187-3199https://doi.org/10.1172/JCI74792
        • Jin S.
        • Shen L.
        • Nie P.
        • Yuan W.
        • Hu L.
        • Li D.
        • et al.
        Endogenous renovascular hypertension combined with low shear stress induces plaque rupture in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2012; 32: 2372-2379https://doi.org/10.1161/ATVBAHA.111.236158
        • Gerrity R.G.
        • Natarajan R.
        • Nadler J.L.
        • Kimsey T.
        Diabetes-induced accelerated atherosclerosis in swine.
        Diabetes. 2001; 50: 1654-1665https://doi.org/10.2337/diabetes.50.7.1654
        • Prescott M.F.
        • McBride C.H.
        • Hasler-Rapacz J.
        • Von Linden J.
        • Rapacz J.
        Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B.
        Am. J. Pathol. 1991; 139: 139-147
        • Shi Z.-S.
        • Feng L.
        • He X.
        • Ishii A.
        • Goldstine J.
        • Vinters H.V.
        • et al.
        Vulnerable plaque in a Swine model of carotid atherosclerosis.
        AJNR Am. J. Neuroradiol. 2009; 30: 469-472https://doi.org/10.3174/ajnr.A1410
        • Soulez G.
        • Lerouge S.
        • Allard L.
        • Roméo P.
        • Qi S.
        • Héon H.
        • et al.
        Vulnerable carotid atherosclerotic plaque creation in a Swine model: evaluation of stenosis creation using absorbable and permanent suture in a diabetic dyslipidemic model.
        J. Vasc. Interv. Radiol. 2012; 23 (1700–1708.e4)https://doi.org/10.1016/j.jvir.2012.09.001
        • Jiang X.-B.
        • Wang J.-S.
        • Liu D.-H.
        • Yuan W.-S.
        • Shi Z.-S.
        Overexpression of matrix metalloproteinase-9 is correlated with carotid intraplaque hemorrhage in a swine model.
        J. Neurointerv. Surg. 2013; 5: 473-477https://doi.org/10.1136/neurintsurg-2012-010401
        • Hollander W.
        • Madoff I.
        • Paddock J.
        • Kirkpatrick B.
        Aggravation of atherosclerosis by hypertension in a subhuman primate model with coarctation of the aorta.
        Circ. Res. 1976; 38: 63-72
        • Li Y.
        • Hsieh C.
        • Wang D.L.
        • Chung H.
        • Liu S.
        • Chao T.
        • et al.
        Remodeling of carotid arteries is associated with increased expression of thrombomodulin in a mouse transverse aortic constriction model.
        Thromb. Haemost. 2007; 97: 658-664https://doi.org/10.1160/TH06
        • Lyon R.T.
        • Runyon-Hass A.
        • Davis H.R.
        • Glagov S.
        • Zarins C.K.
        Protection from atherosclerotic lesion formation by reduction of artery wall motion.
        J. Vasc. Surg. 1987; 5: 59-67
        • Prusty S.
        • Kemper T.
        • Moss M.B.
        • Hollander W.
        Occurrence of stroke in a nonhuman primate model of cerebrovascular disease.
        Stroke. 1988; 19: 84-90
        • Cozzi P.J.
        • Lyon R.T.
        • Davis H.R.
        • Sylora J.
        • Glagov S.
        • Zarins C.K.
        Aortic wall metabolism in relation to susceptibility and resistance to experimental atherosclerosis.
        J. Vasc. Surg. 1988; 7: 706-714
        • Baron B.W.
        • Glagov S.
        • Giddens D.P.
        • Zarins C.K.
        Effect of coarctation on matrix content of experimental aortic atherosclerosis: relation to location, plaque size and blood pressure.
        Atherosclerosis. 1993; 102: 37-49
        • Tropea B.I.
        • Huie P.
        • Cooke J.P.
        • Tsao P.S.
        • Sibley R.K.
        • Zarins C.K.
        Hypertension-enhanced monocyte adhesion in experimental atherosclerosis.
        J. Vasc. Surg. 1996; 23: 596-605
        • Von der Thusen J.H.
        • van Berkel T.J.C.
        • Biessen E.A.L.
        Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice.
        Circulation. 2001; 103: 1164-1170https://doi.org/10.1161/01.CIR.103.8.1164
        • Cheng C.
        • van Haperen R.
        • de Waard M.
        • van Damme L.C.A.
        • Tempel D.
        • Hanemaaijer L.
        • et al.
        Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique.
        Blood. 2005; 106: 3691-3698https://doi.org/10.1182/blood-2005-06-2326
        • Kivelä A.
        • Hartikainen J.
        • Ylä-Herttuala S.
        Dotted collar placed around carotid artery induces asymmetric neointimal lesion formation in rabbits without intravascular manipulations.
        BMC Cardiovasc. Disord. 2012; 12: 91https://doi.org/10.1186/1471-2261-12-91
        • Ding S.F.
        • Ni M.
        • Liu X.L.
        • Qi L.H.
        • Zhang M.
        • Liu C.X.
        • et al.
        A causal relationship between shear stress and atherosclerotic lesions in apolipoprotein E knockout mice assessed by ultrasound biomicroscopy.
        Am. J. Physiol. Heart Circ. Physiol. 2010; 298: H2121-H2129https://doi.org/10.1152/ajpheart.00308.2009
        • Zhang X.
        • Zhu X.
        • Chen B.
        Inhibition of collar-induced carotid atherosclerosis by recombinant apoA-I cysteine mutants in apoE-deficient mice.
        J. Lipid Res. 2010; 51: 3434-3442https://doi.org/10.1194/jlr.M008573
        • De Nooijer R.
        • Verkleij C.J.N.
        • von der Thüsen J.H.
        • Jukema J.W.
        • van der Wall E.E.
        • van Berkel T.J.C.
        • et al.
        Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 340-346https://doi.org/10.1161/01.ATV.0000197795.56960.64
        • Baetta R.
        • Silva F.
        • Comparato C.
        • Uzzo M.
        • Eberini I.
        • Bellosta S.
        • et al.
        Perivascular carotid collar placement induces neointima formation and outward arterial remodeling in mice independent of apolipoprotein E deficiency or Western-type diet feeding.
        Atherosclerosis. 2007; 195: e112-e124https://doi.org/10.1016/j.atherosclerosis.2007.03.035
        • De Nooijer R.
        • von der Thüsen J.H.
        • Verkleij C.J.N.
        • Kuiper J.
        • Jukema J.W.
        • van der Wall E.E.
        • et al.
        Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 2313-2319https://doi.org/10.1161/01.ATV.0000147126.99529.0a
        • Ling M.-Y.
        • Ma Z.-Y.
        • Wang Y.-Y.
        • Qi J.
        • Liu L.
        • Li L.
        • et al.
        Up-regulated ATP-sensitive potassium channels play a role in increased inflammation and plaque vulnerability in macrophages.
        Atherosclerosis. 2013; 226: 348-355https://doi.org/10.1016/j.atherosclerosis.2012.11.016
        • Van Puijvelde G.H.M.
        • van Wanrooij E.J.A.
        • Hauer A.D.
        • de Vos P.
        • van Berkel T.J.C.
        • Kuiper J.
        Effect of natural killer T cell activation on the initiation of atherosclerosis.
        Thromb. Haemost. 2009; 102: 223-230https://doi.org/10.1160/TH09-01-0020
        • Von der Thusen J.H.
        Induction of atherosclerotic plaque rupture in apolipoprotein E-/- mice after adenovirus-mediated transfer of p53.
        Circulation. 2002; 105: 2064-2070https://doi.org/10.1161/01.CIR.0000015502.97828.93
        • Ni M.
        • Zhang M.
        • Ding S.F.
        • Chen W.Q.
        • Zhang Y.
        Micro-ultrasound imaging assessment of carotid plaque characteristics in apolipoprotein-E knockout mice.
        Atherosclerosis. 2008; 197: 64-71https://doi.org/10.1016/j.atherosclerosis.2007.07.039
        • Zadelaar A.S.M.
        • von der Thüsen J.H.
        • Boesten L.S.M.
        • Hoeben R.C.
        • Kockx M.M.
        • Versnel M.A.
        • et al.
        Increased vulnerability of pre-existing atherosclerosis in ApoE-deficient mice following adenovirus-mediated Fas ligand gene transfer.
        Atherosclerosis. 2005; 183: 244-250https://doi.org/10.1016/j.atherosclerosis.2005.03.044
        • Thim T.
        • Hagensen M.K.
        • Hørlyck A.
        • Kim W.Y.
        • Niemann A.K.
        • Thrysøe S.A.
        • et al.
        Wall shear stress and local plaque development in stenosed carotid arteries of hypercholesterolemic minipigs.
        J. Cardiovasc. Dis. Res. 2012; 3: 76-83https://doi.org/10.4103/0975-3583.95358
        • Cooke J.P.
        Flow, NO, and atherogenesis.
        Proc. Natl. Acad. Sci. U. S. A. 2003; 100: 768-770https://doi.org/10.1073/pnas.0430082100
        • Matlung H.L.
        • Neele A.E.
        • Groen H.C.
        • van Gaalen K.
        • Tuna B.G.
        • van Weert A.
        • et al.
        Transglutaminase activity regulates atherosclerotic plaque composition at locations exposed to oscillatory shear stress.
        Atherosclerosis. 2012; 224: 355-362https://doi.org/10.1016/j.atherosclerosis.2012.07.044
        • Winkel L.C.J.
        • Groen H.C.
        • Thiel B.S. Van
        • Müller C.
        • Steen A.F.W. Van Der
        • Wentzel J.J.
        • et al.
        Folate receptor – targeted single-photon emission computed tomography/computed tomography to detect activated macrophages in atherosclerosis: can it distinguish vulnerable from stable atherosclerotic.
        Mol. Imaging. 2013; 13: 1-5https://doi.org/10.2310/7290.2013.00061
        • Cheng C.
        • Tempel D.
        • van Haperen R.
        • van der Baan A.
        • Grosveld F.
        • Daemen M.J.A.P.
        • et al.
        Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress.
        Circulation. 2006; 113: 2744-2753https://doi.org/10.1161/CIRCULATIONAHA.105.590018
        • Cheng C.
        • Tempel D.
        • van Haperen R.
        • de Boer H.C.
        • Segers D.
        • Huisman M.
        • et al.
        Shear stress – induced changes in atherosclerotic plaque composition are modulated by chemokines.
        J. Clin. Invest. 2007; 117: 616-626https://doi.org/10.1172/JCI28180DS1
        • Cheng C.
        • Tempel D.
        • van Haperen R.
        • van Damme L.
        • Algür M.
        • Krams R.
        • et al.
        Activation of MMP8 and MMP13 by angiotensin II correlates to severe intra-plaque hemorrhages and collagen breakdown in atherosclerotic lesions with a vulnerable phenotype.
        Atherosclerosis. 2009; 204: 26-33https://doi.org/10.1016/j.atherosclerosis.2009.01.025
        • Segers D.
        • Lipton J.A.
        • Leenen P.J.M.
        • Cheng C.
        • Tempel D.
        • Pasterkamp G.
        • et al.
        Atherosclerotic plaque stability is affected by the chemokine CXCL10 in both mice and humans.
        Int. J. Inflam. 2011; 2011: 936109https://doi.org/10.4061/2011/936109
        • Olivon V.C.
        • Fraga-Silva R.A.
        • Segers D.
        • Demougeot C.
        • de Oliveira A.M.
        • Savergnini S.S.
        • et al.
        Arginase inhibition prevents the low shear stress-induced development of vulnerable atherosclerotic plaques in ApoE-/- mice.
        Atherosclerosis. 2013; 227: 236-243https://doi.org/10.1016/j.atherosclerosis.2012.12.014
        • Shami A.
        • Gustafsson R.
        • Kalamajski S.
        • Krams R.
        • Segers D.
        • Rauch U.
        • et al.
        Fibromodulin deficiency reduces low-density lipoprotein accumulation in atherosclerotic plaques in apolipoprotein E-null mice.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 354-361https://doi.org/10.1161/ATVBAHA.112.300723
        • Debernardi N.
        • Roijers R.B.
        • Krams R.
        • de Crom R.
        • Mutsaers P.H.A.
        • van der Vusse G.J.
        Microcalcifications in atherosclerotic lesion of apolipoprotein E-deficient mouse.
        Int. J. Exp. Pathol. 2010; 91: 485-494https://doi.org/10.1111/j.1365-2613.2010.00729.x
        • Zhou Y.-Q.
        • Zhu S.-N.
        • Foster F.S.
        • Cybulsky M.I.
        • Henkelman R.M.
        Aortic regurgitation dramatically alters the distribution of atherosclerotic lesions and enhances atherogenesis in mice.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1181-1188https://doi.org/10.1161/ATVBAHA.110.204198
        • Hoi Y.
        • Zhou Y.-Q.
        • Zhang X.
        • Henkelman R.M.
        • Steinman D.A.
        Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis.
        Ann. Biomed. Eng. 2011; 39: 1414-1422https://doi.org/10.1007/s10439-011-0255-z
        • Tronc F.
        • Wassef M.
        • Esposito B.
        • Henrion D.
        • Glagov S.
        • Tedgui A.
        Role of NO in flow-induced remodeling of the rabbit common carotid artery.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1256-1262
        • Bomberger R.A.
        • Zarins C.K.
        • Taylor K.E.
        • Glagov S.
        Effect of hypotension on atherogenesis and aortic wall composition.
        J. Surg. Res. 1980; 28: 402-409
        • Zhou Y.-Q.
        • Zhu S.-N.
        • Foster F.S.
        • Cybulsky M.I.
        • Henkelman R.M.
        Aortic regurgitation dramatically alters the distribution of atherosclerotic lesions and enhances atherogenesis in mice.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1181-1188https://doi.org/10.1161/ATVBAHA.110.204198