Advertisement

The effect of insulin to decrease neointimal growth after arterial injury is endothelial nitric oxide synthase-dependent

      Highlights

      • Insulin decreased neointimal area after arterial injury in both rats and mice.
      • This effect of insulin was inhibited by a nitric oxide synthase (NOS) inhibitor.
      • This effect of insulin was absent in endothelial NOS-knockout mice.

      Abstract

      In vitro, insulin has mitogenic effects on vascular smooth muscle cells (VSMC) but also has protective effects on endothelial cells by stimulating nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) expression. Furthermore, NOS inhibition attenuates the effect of insulin to inhibit VSMC migration in vitro. Using an in vivo model, we have previously shown that insulin decreases neointimal growth and cell migration and increases re-endothelialization after arterial injury in normal rats. Since insulin can stimulate NOS, and NO can decrease neointimal growth, we hypothesized that NOS, and more specifically eNOS was required for the effects of insulin in vivo.
      Rats were given subcutaneous insulin implants (3 U/day) alone or with the NOS inhibitor l-NAME (2 mg kg−1 day−1) 3 days before arterial (carotid or aortic) balloon catheter injury. Insulin decreased both neointimal area (P < 0.01) and cell migration (P < 0.01), and increased re-endothelialization (P < 0.05). All of these effects were prevented by the co-administration of l-NAME. Insulin was found to decrease inducible NOS expression (P < 0.05) but increase eNOS phosphorylation (P < 0.05). These changes were also translated at the functional level where insulin improved endothelial-dependent vasorelaxation. To further study the NOS isoform involved in insulin action, s.c. insulin (0.1 U/day) was given to wild-type and eNOS knockout mice. We found that insulin was effective at decreasing neointimal formation in wild-type mice after wire injury of the femoral artery, whereas this effect of insulin was absent in eNOS knockout mice. These results show that the vasculoprotective effect of insulin after arterial injury is mediated by an eNOS-dependent mechanism.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Muniyappa R.
        • Montagnani M.
        • Koh K.K.
        • Quon M.J.
        Cardiovascular actions of insulin.
        Endocr. Rev. 2007; 28: 463-491
        • Napoli C.
        • Ignarro L.J.
        Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases.
        Arch. Pharm. Res. 2009; 32: 1103-1108
        • Moussa I.
        • Leon M.B.
        • Baim D.S.
        • O'Neill W.W.
        • Popma J.J.
        • Buchbinder M.
        • Midwall J.
        • Simonton C.A.
        • Keim E.
        • Wang P.
        • Kuntz R.E.
        • Moses J.W.
        Impact of sirolimus-eluting stents on outcome in diabetic patients: a SIRIUS (SIRolImUS-coated Bx velocity balloon-expandable stent in the treatment of patients with de novo coronary artery lesions) substudy.
        Circulation. 2004; 109: 2273-2278
        • Piatti P.
        • Di Mario C.
        • Monti L.D.
        • Fragasso G.
        • Sgura F.
        • Caumo A.
        • Setola E.
        • Lucotti P.
        • Galluccio E.
        • Ronchi C.
        • Origgi A.
        • Zavaroni I.
        • Margonato A.
        • Colombo A.
        Association of insulin resistance, hyperleptinemia, and impaired nitric oxide release with in-stent restenosis in patients undergoing coronary stenting.
        Circulation. 2003; 108: 2074-2081
        • Indolfi C.
        • Torella D.
        • Cavuto L.
        • Davalli A.M.
        • Coppola C.
        • Esposito G.
        • Carriero M.V.
        • Rapacciuolo A.
        • Di L.E.
        • Stabile E.
        • Perrino C.
        • Chieffo A.
        • Pardo F.
        • Chiariello M.
        Effects of balloon injury on neointimal hyperplasia in streptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats.
        Circulation. 2001; 103: 2980-2986
        • Foster E.
        • Zhang S.
        • Kahn A.M.
        Insulin stimulates arterial neointima formation in normal rats after balloon injury.
        Diabetes Obes. Metab. 2006; 8: 348-351
        • Pu Q.
        • Chang Y.
        • Zhang C.
        • Cai Y.
        • Hassid A.
        Chronic insulin treatment suppresses PTP1B function, induces increased PDGF signaling, and amplifies neointima formation in the balloon-injured rat artery.
        Am. J. Physiol. Heart Circ. Physiol. 2009; 296: H132-H139
        • Kubota T.
        • Kubota N.
        • Moroi M.
        • Terauchi Y.
        • Kobayashi T.
        • Kamata K.
        • Suzuki R.
        • Tobe K.
        • Namiki A.
        • Aizawa S.
        • Nagai R.
        • Kadowaki T.
        • Yamaguchi T.
        Lack of insulin receptor substrate-2 causes progressive neointima formation in response to vessel injury.
        Circulation. 2003; 107: 3073-3080
        • Murthy S.N.
        • Pankey E.A.
        • Banka A.A.
        • Badejo Jr., A.M.
        • Wekerle R.
        • Vilija V.
        • Izadpanah R.
        • Kadowitz P.J.
        • Fonseca V.A.
        Effects of insulin detemir on balloon catheter injured carotid artery in Zucker fatty rats.
        J. Diabetes Complicat. 2012; 26: 470-475
        • Breen D.M.
        • Chan K.K.
        • Dhaliwall J.K.
        • Ward M.R.
        • Al Koudsi N.
        • Lam L.
        • De Souza M.
        • Ghanim H.
        • Dandona P.
        • Stewart D.J.
        • Bendeck M.P.
        • Giacca A.
        Insulin increases reendothelialization and inhibits cell migration and neointimal growth after arterial injury.
        Arterioscler. Thromb. Vasc. Biol. 2009; 29: 1060-1066
        • Breen D.M.
        • Dhaliwall J.K.
        • Chan K.K.
        • Guo J.
        • Lam L.
        • Bendeck M.P.
        • Giacca A.
        Insulin inhibits and oral sucrose increases neointimal growth after arterial injury in rats.
        J. Vasc. Res. 2010; 47: 412-422
        • Montagnani M.
        • Chen H.
        • Barr V.A.
        • Quon M.J.
        Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179).
        J. Biol. Chem. 2001; 276: 30392-30398
        • Di L.A.
        • Lin M.I.
        • Murata T.
        • Landskroner-Eiger S.
        • Schleicher M.
        • Kothiya M.
        • Iwakiri Y.
        • Yu J.
        • Huang P.L.
        • Sessa W.C.
        eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases.
        J. Cell. Sci. 2013; 126: 5541-5552
        • Ambrosini M.V.
        • Mariucci G.
        • Rambotti M.G.
        • Tantucci M.
        • Covarelli C.
        • De A.L.
        • Del S.P.
        Ultrastructural investigations on protective effects of NCX 4016 (nitroaspirin) on macrovascular endothelium in diabetic Wistar rats.
        J. Submicrosc. Cytol. Pathol. 2005; 37: 205-213
        • Li Q.
        • Atochin D.
        • Kashiwagi S.
        • Earle J.
        • Wang A.
        • Mandeville E.
        • Hayakawa K.
        • d'Uscio L.V.
        • Lo E.H.
        • Katusic Z.
        • Sessa W.
        • Huang P.L.
        Deficient eNOS phosphorylation is a mechanism for diabetic vascular dysfunction contributing to increased stroke size.
        Stroke. 2013; 44: 3183-3188
        • Wallace J.L.
        • Del S.P.
        • Cirino G.
        • Muscara M.N.
        Nitric oxide-releasing NSAIDs: GI-safe antithrombotics.
        IDrugs. 1999; 2: 321-326
        • Begum N.
        • Ragolia L.
        High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation.
        Am. J. Physiol. Cell. Physiol. 2000; 278: C81-C91
        • Kahn A.M.
        • Allen J.C.
        • Seidel C.L.
        • Lichtenberg D.S.
        • Song T.
        • Zhang S.
        Insulin increases NO-stimulated guanylate cyclase activity in cultured VSMC while raising redox potential.
        Am. J. Physiol. Endocrinol. Metab. 2000; 278: E627-E633
        • Kahn A.M.
        • Allen J.C.
        • Seidel C.L.
        • Zhang S.
        Insulin inhibits migration of vascular smooth muscle cells with inducible nitric oxide synthase.
        Hypertension. 2000; 35: 303-306
        • Breen D.M.
        • Dolinsky V.W.
        • Zhang H.
        • Ghanim H.
        • Guo J.
        • Mroziewicz M.
        • Tsiani E.L.
        • Bendeck M.P.
        • Dandona P.
        • Dyck J.R.
        • Heximer S.P.
        • Giacca A.
        Resveratrol inhibits neointimal formation after arterial injury through an endothelial nitric oxide synthase-dependent mechanism.
        Atherosclerosis. 2012; 222: 375-381
        • Clowes A.W.
        • Reidy M.A.
        • Clowes M.M.
        Mechanisms of stenosis after arterial injury.
        Lab. Invest. 1983; 49: 208-215
        • Ramzy D.
        • Wallen J.
        • Badiwala M.V.
        • Tumiati L.C.
        • Tepperman E.
        • Ross H.J.
        • Delgado D.H.
        • Rao V.
        Endothelin-1 antagonism and nitric oxide augmentation prevents cyclosporine-induced vasomotor impairment.
        J. Heart Lung Transpl. 2011; 30: 77-85
        • Bess E.
        • Fisslthaler B.
        • Fromel T.
        • Fleming I.
        Nitric oxide-induced activation of the AMP-activated protein kinase alpha2 subunit attenuates IkappaB kinase activity and inflammatory responses in endothelial cells.
        PLoS One. 2011; 6: e20848
        • Butt E.
        • Bernhardt M.
        • Smolenski A.
        • Kotsonis P.
        • Frohlich L.G.
        • Sickmann A.
        • Meyer H.E.
        • Lohmann S.M.
        • Schmidt H.H.
        Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases.
        J. Biol. Chem. 2000; 275: 5179-5187
        • Li H.
        • Wallerath T.
        • Forstermann U.
        Physiological mechanisms regulating the expression of endothelial-type NO synthase.
        Nitric. Oxide. 2002; 7: 132-147
        • Oelze M.
        • Mollnau H.
        • Hoffmann N.
        • Warnholtz A.
        • Bodenschatz M.
        • Smolenski A.
        • Walter U.
        • Skatchkov M.
        • Meinertz T.
        • Munzel T.
        Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction.
        Circ. Res. 2000; 87: 999-1005
        • Major T.C.
        • Overhiser R.W.
        • Panek R.L.
        Evidence for NO involvement in regulating vascular reactivity in balloon-injured rat carotid artery.
        Am. J. Physiol. 1995; 269: H988-H996
        • Cho M.K.
        • Suh S.H.
        • Kim S.G.
        JunB/AP-1 and NF-kappa B-mediated induction of nitric oxide synthase by bovine type I collagen in serum-stimulated murine macrophages.
        Nitric. Oxide. 2002; 6: 319-332
        • Guo J.
        • Dhaliwall J.K.
        • Chan K.K.
        • Ghanim H.
        • Al K.N.
        • Lam L.
        • Madadi G.
        • Dandona P.
        • Giacca A.
        • Bendeck M.P.
        In vivo effect of insulin to decrease matrix metalloproteinase-2 and -9 activity after arterial injury.
        J. Vasc. Res. 2013; 50: 279-288
        • von der Thusen J.H.
        • Fekkes M.L.
        • Passier R.
        • van Zonneveld A.J.
        • Mainfroid V.
        • van Berkel T.J.
        • Biessen E.A.
        Adenoviral transfer of endothelial nitric oxide synthase attenuates lesion formation in a novel murine model of postangioplasty restenosis.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 357-362
        • Moroi M.
        • Zhang L.
        • Yasuda T.
        • Virmani R.
        • Gold H.K.
        • Fishman M.C.
        • Huang P.L.
        Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice.
        J. Clin. Invest. 1998; 101: 1225-1232
        • Iwakura A.
        • Luedemann C.
        • Shastry S.
        • Hanley A.
        • Kearney M.
        • Aikawa R.
        • Isner J.M.
        • Asahara T.
        • Losordo D.W.
        Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury.
        Circulation. 2003; 108: 3115-3121
        • Randriamboavonjy V.
        • Fleming I.
        Endothelial nitric oxide synthase (eNOS) in platelets: how is it regulated and what is it doing there?.
        Pharmacol. Rep. 2005; 57: 59-65
        • Gonzalez-Fernandez F.
        • Lopez-Farre A.
        • Rodriguez-Feo J.A.
        • Farre J.
        • Guerra J.
        • Fortes J.
        • Millas I.
        • Garcia-Duran M.
        • Rico L.
        • Mata P.
        • de Miguel L.S.
        • Casado S.
        Expression of inducible nitric oxide synthase after endothelial denudation of the rat carotid artery: role of platelets.
        Circ. Res. 1998; 83: 1080-1087
        • Chyu K.Y.
        • Dimayuga P.
        • Zhu J.
        • Nilsson J.
        • Kaul S.
        • Shah P.K.
        • Cercek B.
        Decreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice.
        Circ. Res. 1999; 85: 1192-1198
        • Cooney R.
        • Hynes S.O.
        • Sharif F.
        • Howard L.
        • O'Brien T.
        Effect of gene delivery of NOS isoforms on intimal hyperplasia and endothelial regeneration after balloon injury.
        Gene Ther. 2007; 14: 396-404
        • Morishita T.
        • Tsutsui M.
        • Shimokawa H.
        • Horiuchi M.
        • Tanimoto A.
        • Suda O.
        • Tasaki H.
        • Huang P.L.
        • Sasaguri Y.
        • Yanagihara N.
        • Nakashima Y.
        Vasculoprotective roles of neuronal nitric oxide synthase.
        FASEB J. 2002; 16: 1994-1996
        • Yu W.J.
        • Juang S.W.
        • Chin W.T.
        • Chi T.C.
        • Chang C.J.
        • Cheng J.T.
        Insulin restores neuronal nitric oxide synthase expression in streptozotocin-induced diabetic rats.
        Life Sci. 2000; 68: 625-634
        • Khan B.V.
        • Harrison D.G.
        • Olbrych M.T.
        • Alexander R.W.
        • Medford R.M.
        Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells.
        Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 9114-9119
        • Sinnaeve P.
        • Chiche J.D.
        • Gillijns H.
        • Van P.N.
        • Wirthlin D.
        • Van De W.F.
        • Collen D.
        • Bloch K.D.
        • Janssens S.
        Overexpression of a constitutively active protein kinase G mutant reduces neointima formation and in-stent restenosis.
        Circulation. 2002; 105: 2911-2916
        • Tsai E.J.
        • Kass D.A.
        Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics.
        Pharmacol. Ther. 2009; 122: 216-238
        • Sahara M.
        • Sata M.
        • Morita T.
        • Nakajima T.
        • Hirata Y.
        • Nagai R.
        A phosphodiesterase-5 inhibitor vardenafil enhances angiogenesis through a protein kinase G-dependent hypoxia-inducible factor-1/vascular endothelial growth factor pathway.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1315-1324
        • Doppler H.
        • Storz P.
        Regulation of VASP by phosphorylation: consequences for cell migration.
        Cell. Adh. Migr. 2013; 7: 482-486
        • Kuhn M.
        • Volker K.
        • Schwarz K.
        • Carbajo-Lozoya J.
        • Flogel U.
        • Jacoby C.
        • Stypmann J.
        • van E.M.
        • Gambaryan S.
        • Hartmann M.
        • Werner M.
        • Wieland T.
        • Schrader J.
        • Baba H.A.
        The natriuretic peptide/guanylyl cyclase–a system functions as a stress-responsive regulator of angiogenesis in mice.
        J. Clin. Invest. 2009; 119: 2019-2030
        • Upmacis R.K.
        • Deeb R.S.
        • Resnick M.J.
        • Lindenbaum R.
        • Gamss C.
        • Mittar D.
        • Hajjar D.P.
        Involvement of the mitogen-activated protein kinase cascade in peroxynitrite-mediated arachidonic acid release in vascular smooth muscle cells.
        Am. J. Physiol. Cell. Physiol. 2004; 286: C1271-C1280
        • Jacob A.
        • Molkentin J.D.
        • Smolenski A.
        • Lohmann S.M.
        • Begum N.
        Insulin inhibits PDGF-directed VSMC migration via NO/cGMP increase of MKP-1 and its inactivation of MAPKs.
        Am. J. Physiol. Cell. Physiol. 2002; 283: C704-C713
        • Kim S.Y.
        • Kwon Y.W.
        • Jung I.L.
        • Sung J.H.
        • Park S.G.
        Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia by suppression of ERK via PKCalpha-mediated MKP-1 induction.
        Cardiovasc. Res. 2011; 92: 307-316
        • Bandyopadhyay G.
        • Standaert M.L.
        • Zhao L.
        • Yu B.
        • Avignon A.
        • Galloway L.
        • Karnam P.
        • Moscat J.
        • Farese R.V.
        Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport.
        J. Biol. Chem. 1997; 272: 2551-2558
        • Selemidis S.
        • Dusting G.J.
        • Peshavariya H.
        • Kemp-Harper B.K.
        • Drummond G.R.
        Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells.
        Cardiovasc. Res. 2007; 75: 349-358
        • Zhou N.
        • Yu Q.J.
        • Si R.
        • Gao H.K.
        • Wang T.
        • Gao F.
        • Wang H.C.
        • Bian J.F.
        Postprocedure administration of insulin in canine autologous vein grafting: a potential strategy to attenuate intimal hyperplasia.
        J. Cardiovasc. Pharmacol. 2010; 56: 402-412