Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice


      • Mice carrying a CD68 promoter-driven Grx2a-EGFP transgene show Grx2a expression that is restricted to mitochondria of macrophages.
      • Overexpression of mitochondrial Grx2a disrupts mitochondrial bioenergetics in macrophages.
      • Overexpression of mitochondrial Grx2a impairs mitochondrial ATP turnover in macrophages and sensitizes macrophages to oxysterol-induced apoptosis.
      • Overexpression of mitochondrial Grx2a in macrophages had little or no effect on atherogenesis in high-fat diet fed LDLR-null mice.



      Reactive oxygen species (ROS)-mediated formation of mixed disulfides between critical cysteine residues in proteins and glutathione, a process referred to as protein S-glutathionylation, can lead to loss of enzymatic activity and protein degradation. Since mitochondria are a major source of ROS and a number of their proteins are susceptible to protein-S-glutathionylation, we examined if overexpression of mitochondrial thioltranferase glutaredoxin 2a (Grx2a) in macrophages of dyslipidemic atherosclerosis-prone mice would prevent mitochondrial dysfunction and protect against atherosclerotic lesion formation.

      Methods and results

      We generated transgenic Grx2aMacLDLR−/− mice, which overexpress Grx2a as an EGFP fusion protein under the control of the macrophage-specific CD68 promoter. Transgenic mice and wild type siblings were fed a high fat diet for 14 weeks at which time we assessed mitochondrial bioenergetic function in peritoneal macrophages and atherosclerotic lesion formation. Flow cytometry and Western blot analysis demonstrated transgene expression in blood monocytes and peritoneal macrophages isolated from Grx2aMacLDLR−/− mice, and fluorescence confocal microscopy studies confirmed that Grx2a expression was restricted to the mitochondria of monocytic cells. Live-cell bioenergetic measurements revealed impaired mitochondrial ATP turnover in macrophages isolated from Grx2aMacLDLR−/− mice compared to macrophages isolated from non-transgenic mice. However, despite impaired mitochondrial function in macrophages of Grx2aMacLDLR−/− mice, we observed no significant difference in the severity of atherosclerosis between wildtype and Grx2aMacLDLR−/− mice.


      Our findings suggest that increasing Grx2a activity in macrophage mitochondria disrupts mitochondrial respiration and ATP production, but without affecting the proatherogenic potential of macrophages. Our data suggest that macrophages are resistant against moderate mitochondrial dysfunction and rely on alternative pathways for ATP synthesis to support the energetic requirements.



      CBC (complete blood cell counts), EGFP (enhanced green fluorescent protein), ORO (oil red O), OXPHOS (oxidative phosphorylation), GR (glutathione reductase), GSH (glutathione), GSSG (glutathione disulfide), Grx (glutaredoxin), Grx2a (glutaredoxin 2a), ROS (reactive oxygen species), Trx (thioredoxins), Wt (wild type)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gordon S.
        • Taylor P.R.
        Monocyte and macrophage heterogeneity.
        Nat. Rev. Immunol. 2005; 5: 953-964
        • Murray P.J.
        • Wynn T.A.
        Protective and pathogenic functions of macrophage subsets.
        Nat. Rev. Immunol. 2011; 11: 723-737
        • Davies L.C.
        • Jenkins S.J.
        • Allen J.E.
        • Taylor P.R.
        Tissue-resident macrophages.
        Nat. Immunol. 2013; 14: 986-995
        • Tavakoli S.
        • Zamora D.
        • Ullevig S.
        • Asmis R.
        Bioenergetic profiles diverge during macrophage polarization: Implications for the interpretation of 18F-FDG PET imaging of atherosclerosis.
        J. Nucl. Med. 2013; 54: 1661-1667
        • Sakamoto T.
        • Seiki M.
        A membrane protease regulates energy production in macrophages by activating hypoxia-inducible factor-1 via a non-proteolytic mechanism.
        J. Biol. Chem. 2010; 285: 29951-29964
        • Staniek K.
        • Nohl H.
        H(2)O(2) detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system.
        Biochim. Biophys. Acta. 1999; 1413: 70-80
        • Bonnard C.
        • Durand A.
        • Peyrol S.
        • et al.
        Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
        J. Clin. Invest. 2008; 118: 789-800
        • Zorov D.B.
        • Filburn C.R.
        • Klotz L.O.
        • Zweier J.L.
        • Sollott S.J.
        Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes.
        J. Exp. Med. 2000; 192: 1001-1014
        • Brandes R.P.
        Triggering mitochondrial radical release: a new function for NADPH oxidases.
        Hypertension. 2005; 45: 847-848
        • Hurd T.R.
        • Costa N.J.
        • Dahm C.C.
        • et al.
        Glutathionylation of mitochondrial proteins.
        Antioxid. Redox Signal. 2005; 7: 999-1010
        • Holmgren A.
        Antioxidant function of thioredoxin and glutaredoxin systems.
        Antioxid. Redox Signal. 2000; 2: 811-820
        • Untucht-Grau R.
        • Schirmer R.H.
        • Schirmer I.
        • Krauth-Siegel R.L.
        Glutathione reductase from human erythrocytes: amino-acid sequence of the structurally known FAD-binding domain.
        Eur. J. Biochem. 1981; 120: 407-419
        • Savvides S.N.
        • Scheiwein M.
        • Bohme C.C.
        • et al.
        Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite.
        J. Biol. Chem. 2002; 277: 2779-2784
        • Mailloux R.J.
        • Xuan J.Y.
        • McBride S.
        • et al.
        Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions.
        J. Biol. Chem. 2014; 289: 14812-14828
        • Demasi M.
        • Netto L.E.
        • Silva G.M.
        • et al.
        Redox regulation of the proteasome via S-glutathionylation.
        Redox Biol. 2013; 2: 44-51
        • Shelton M.D.
        • Chock P.B.
        • Mieyal J.J.
        Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.
        Antioxid. Redox Signal. 2005; 7: 348-366
        • Go Y.M.
        • Jones D.P.
        Redox control systems in the nucleus: mechanisms and functions.
        Antioxid. Redox Signal. 2010; 13: 489-509
        • Jung C.H.
        • Thomas J.A.
        S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione.
        Arch. Biochem. Biophys. 1996; 335: 61-72
        • Gravina S.A.
        • Mieyal J.J.
        Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase.
        Biochemistry. 1993; 32: 3368-3376
        • Pai H.V.
        • Starke D.W.
        • Lesnefsky E.J.
        • Hoppel C.L.
        • Mieyal J.J.
        What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria?.
        Antioxid. Redox Signal. 2007; 9: 2027-2033
        • Gladyshev V.N.
        • Liu A.
        • Novoselov S.V.
        • et al.
        Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2.
        J. Biol. Chem. 2001; 276: 30374-30380
        • Hudemann C.
        • Lonn M.E.
        • Godoy J.R.
        • et al.
        Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoforms.
        Antioxid. Redox Signal. 2009; 11: 1-14
        • Lonn M.E.
        • Hudemann C.
        • Berndt C.
        • et al.
        Expression pattern of human glutaredoxin 2 isoforms: Identification and characterization of two testis/cancer cell-specific isoforms.
        Antioxid. Redox Signal. 2008; 10: 547-557
        • Gallogly M.M.
        • Starke D.W.
        • Leonberg A.K.
        • Ospina S.M.
        • Mieyal J.J.
        Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: Implications for intracellular roles.
        Biochemistry. 2008; 47: 11144-11157
        • Fernandes A.P.
        • Holmgren A.
        Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system.
        Antioxid. Redox Signal. 2004; 6: 63-74
        • Wang Y.
        • Qiao M.
        • Mieyal J.J.
        • Asmis L.M.
        • Asmis R.
        Molecular mechanism of glutathione-mediated protection from oxidized low-density lipoprotein-induced cell injury in human macrophages: role of glutathione reductase and glutaredoxin.
        Free Radic. Biol. Med. 2006; 41: 775-785
        • Qiao M.
        • Kisgati M.
        • Cholewa J.M.
        • et al.
        Increased expression of glutathione reductase in macrophages decreases atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1375-1382
        • Qiao M.
        • Zhao Q.
        • Lee C.F.
        • et al.
        Thiol oxidative stress induced by metabolic disorders amplifies macrophage chemotactic responses and accelerates atherogenesis and kidney injury in LDL receptor-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2009; 29: 1779-1786
        • Greaves D.R.
        • Quinn C.M.
        • Seldin M.F.
        • Gordon S.
        Functional comparison of the murine macrosialin and human CD68 promoters in macrophage and nonmacrophage cell lines.
        Genomics. 1998; 54: 165-168
        • Huby T.
        • Doucet C.
        • Dachet C.
        • et al.
        Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues.
        J. Clin. Invest. 2006; 116: 2767-2776
        • Iqbal A.J.
        • McNeill E.
        • Kapellos T.S.
        • et al.
        Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.
        Blood. 2014; 124: e33-44
        • Hill B.G.
        • Higdon A.N.
        • Dranka B.P.
        • Darley-Usmar V.M.
        Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation.
        Biochim. Biophys. Acta. 2010; 1797: 285-295
        • Stoneman V.
        • Braganza D.
        • Figg N.
        • et al.
        Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques.
        Circ. Res. 2007; 100: 884-893
        • Nasir K.
        • Guallar E.
        • Navas-Acien A.
        • Criqui M.H.
        • Lima J.A.
        Relationship of monocyte count and peripheral arterial disease: results from the national health and nutrition examination survey 1999-2002.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1966-1971
        • Johnsen S.H.
        • Fosse E.
        • Joakimsen O.
        • et al.
        Monocyte count is a predictor of novel plaque formation: a 7-year follow-up study of 2610 persons without carotid plaque at baseline the tromso study.
        Stroke. 2005; 36: 715-719
        • Swirski F.K.
        • Libby P.
        • Aikawa E.
        • et al.
        Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata.
        J. Clin. Invest. 2007; 117: 195-205
        • Ullevig S.
        • Kim H.S.
        • Asmis R.
        S-glutathionylation in monocyte and macrophage (dys)function.
        Int. J. Mol. Sci. 2013; 14: 15212-15232
        • Kim H.S.
        • Ullevig S.L.
        • Zamora D.
        • Lee C.F.
        • Asmis R.
        Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: E2803-E2812
        • Kim H.S.
        • Ullevig S.L.
        • Nguyen H.N.
        • Vanegas D.
        • Asmis R.
        Redox regulation of 14-3-3zeta controls monocyte migration.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1514-1521
        • Allen E.M.
        • Mieyal J.J.
        Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.
        Antioxid. Redox Signal. 2012; 17: 1748-1763
        • Yin F.
        • Sancheti H.
        • Cadenas E.
        Mitochondrial thiols in the regulation of cell death pathways.
        Antioxid. Redox Signal. 2012; 17: 1714-1727
        • Mailloux R.J.
        • Xuan J.Y.
        • Beauchamp B.
        • Jui L.
        • Lou M.
        • Harper M.E.
        Glutaredoxin-2 is required to control proton leak through uncoupling protein-3.
        J. Biol. Chem. 2013; 288: 8365-8379
        • Pastore A.
        • Piemonte F.
        S-glutathionylation signaling in cell biology: progress and prospects.
        Eur. J. Pharm. Sci. 2012; 46: 279-292
        • Dalle-Donne I.
        • Rossi R.
        • Giustarini D.
        • Colombo R.
        • Milzani A.
        S-glutathionylation in protein redox regulation.
        Free Radic. Biol. Med. 2007; 43: 883-898
        • Kim S.J.
        • Jung H.J.
        • Choi H.
        • Lim C.J.
        Glutaredoxin 2a, a mitochondrial isoform, plays a protective role in a human cell line under serum deprivation.
        Mol. Biol. Rep. 2012; 39: 3755-3765
        • Diotte N.M.
        • Xiong Y.
        • Gao J.
        • Chua B.H.
        • Ho Y.S.
        Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2.
        Biochim. Biophys. Acta. 2009; 1793: 427-438
        • Wu H.
        • Lin L.
        • Giblin F.
        • Ho Y.S.
        • Lou M.F.
        Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells.
        Free Radic. Biol. Med. 2011; 51: 2108-2117
        • Ullevig S.
        • Zhao Q.
        • Lee C.F.
        • Seok Kim H.
        • Zamora D.
        • Asmis R.
        NADPH oxidase 4 mediates monocyte priming and accelerated chemotaxis induced by metabolic stress.
        Arterioscler. Thromb. Vasc. Biol. 2012; 32: 415-426
        • Rodriguez-Prados J.C.
        • Traves P.G.
        • Cuenca J.
        • et al.
        Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation.
        J. Immunol. 2010; 185: 605-614
        • Mailloux R.J.
        • Seifert E.L.
        • Bouillaud F.
        • Aguer C.
        • Collins S.
        • Harper M.E.
        Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3.
        J. Biol. Chem. 2011; 286: 21865-21875
      1. Retraction notice to “overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis” [J. mol. cell. cardiol. 44 (2008) 252–260.
        J. Mol. Cell. Cardiol. 2012; 53: 744
      2. Retraction notice to “role of glutaredoxin-1 in cardioprotection: an insight with Glrx1 transgenic and knockout animals” [J. mol. cell. cardiol. 44 (2008) 261–269.
        J. Mol. Cell. Cardiol. 2012; 53: 745
        • Lillig C.H.
        • Berndt C.
        Glutaredoxins in thiol/disulfide exchange.
        Antioxid. Redox Signal. 2013; 18: 1654-1665
        • Schutte L.D.
        • Baumeister S.
        • Weis B.
        • Hudemann C.
        • Hanschmann E.M.
        • Lillig C.H.
        Identification of potential protein dithiol-disulfide substrates of mammalian Grx2.
        Biochim. Biophys. Acta. 2013; 1830: 4999-5005