Advertisement

Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia

      Highlights

      • The LPL gene was sequenced in individuals with severe/moderate hypertriglyceridemia.
      • Rare LPL variants were found in 33.5% of subjects with severe hypertriglyceridemia.
      • 26 patients were homozygotes, 9 compound heterozygotes and 21 simple heterozygotes.
      • Thirty six rare LPL variants were identified, 15 of which not reported previously.
      • Screening of patients' relatives led to the identification of 44 simple heterozygotes.

      Abstract

      Background

      Monogenic hypertriglyceridemia (HTG) may result from mutations in some genes which impair the intravascular lipolysis of triglyceride (TG)-rich lipoproteins mediated by the enzyme Lipoprotein lipase (LPL). Mutations in the LPL gene are the most frequent cause of monogenic HTG (familial chylomicronemia) with recessive transmission.

      Methods

      The LPL gene was resequenced in 149 patients with severe HTG (TG > 10 mmol/L) and 106 patients with moderate HTG (TG > 4.5 and <10 mmol/L) referred to tertiary Lipid Clinics in Italy.

      Results

      In the group of severe HTG, 26 patients (17.4%) were homozygotes, 9 patients (6%) were compound heterozygotes and 15 patients (10%) were simple heterozygotes for rare LPL gene variants. Single or multiple episodes of pancreatitis were recorded in 24 (48%) of these patients. There was no difference in plasma TG concentration between patients with or without a positive history of pancreatitis. Among moderate HTG patients, six patients (5.6%) were heterozygotes for rare LPL variants; two of them had suffered from pancreatitis. Overall 36 rare LPL variants were found, 15 of which not reported previously. Systematic analysis of close relatives of mutation carriers led to the identification of 44 simple heterozygotes (plasma TG 3.2 ± 4.1 mmol/L), none of whom had a positive history of pancreatitis.

      Conclusions

      The prevalence of rare LPL variants in patients with severe or moderate HTG, referred to tertiary lipid clinics, was 50/149 (33.5%) and 6/106 (5.6%), respectively. Systematic analysis of relatives of mutation carriers is an efficient way to identify heterozygotes who may develop severe HTG.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Young S.G.
        • Zechner R.
        Biochemistry and pathophysiology of intravascular and intracellular lipolysis.
        Genes. Dev. 2013; 27: 459-484https://doi.org/10.1101/gad.209296.112
        • Kersten S.
        Physiological regulation of lipoprotein lipase.
        Biochim. Biophys. Acta. 2014; : 919-933https://doi.org/10.1016/j.bbalip.2014.03.013
        • Péterfy M.
        Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism.
        Biochim. Biophys. Acta. 2012; : 790-794https://doi.org/10.1016/j.bbalip.2011.10.006
        • Johansen C.T.
        • Kathiresan S.
        • Hegele R.A.
        Genetic determinants of plasma triglycerides.
        J. Lipid Res. 2011; 52: 189-206https://doi.org/10.1194/jlr.R009720
        • Brahm A.
        • Hegele R.A.
        Hypertriglyceridemia.
        Nutrients. 2013; 5: 981-1001https://doi.org/10.3390/nu5030981
        • Brunzell J.
        • Deeb S.
        Familial lipoprotein lipase deficiency, apoCII deficiency and hepatic lipase deficiency.
        in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic and Molecular Bases of Inherited Disease. 8Edn. McGraw-Hill, NewYork, NY2001: 2789-2816
        • Brahm A.J.
        • Hegele R.A.
        Chylomicronaemia-current diagnosis and future therapies.
        Nat. Rev. Endocrinol. 2015; (in press)https://doi.org/10.1038/nrendo.2015.26
        • Johansen C.T.
        • Hegele R.A.
        Allelic and phenotypic spectrum of plasma triglycerides.
        Biochim. Biophys. Acta. 2012; 1821: 833-842https://doi.org/10.1016/j.bbalip.2011.10.007
        • Hegele R.A.
        • Ginsberg H.N.
        • Chapman M.J.
        • Nordestgaard B.G.
        • Kuivenhoven J.A.
        • Averna M.
        • Borén J.
        • Bruckert E.
        • Catapano A.L.
        • Descamps O.S.
        • Hovingh G.K.
        • Humphries S.E.
        • Kovanen P.T.
        • Masana L.
        • Pajukanta P.
        • Parhofer K.G.
        • Raal F.J.
        • Ray K.K.
        • Santos R.D.
        • Stalenhoef A.F.
        • Stroes E.
        • Taskinen M.R.
        • Tybjærg-Hansen A.
        • Watts G.F.
        • Wiklund O.
        • European Atherosclerosis Society Consensus Panel
        The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.
        Lancet Diabetes Endocrinol. 2014; 2: 655-666https://doi.org/10.1016/S2213-8587(13)70191-8
        • Lewis G.F.
        • Xiao C.
        • Hegele R.A.
        Hypertriglyceridemia in the genomic era: a new paradigm.
        Endocr. Rev. 2015; 36: 131-147https://doi.org/10.1210/er.2014-1062
        • Pisciotta L.
        • Fresa R.
        • Bellocchio A.
        • Guido V.
        • Priore Oliva C.
        • Calandra S.
        • Bertolini S.
        Two novel rare variants of APOA5 gene found in subjects with severe hypertriglyceridemia.
        Clin. Chim. Acta. 2011; 412: 2194-2198https://doi.org/10.1016/j.cca.2011.08.001
        • Baginsky M.L.
        • Brown W.V.
        A new method for the measurement of lipoprotein lipase in postheparin plasma using sodium dodecyl sulfate for the inactivation of hepatic triglyceride lipase.
        J. Lipid Res. 1979; 20: 548-556
        • Pugni L.
        • Riva E.
        • Pietrasanta C.
        • Rabacchi C.
        • Bertolini S.
        • Pederiva C.
        • Mosca F.
        • Calandra S.
        Severe hypertriglyceridemia in a newborn with monogenic lipoprotein lipase deficiency: an unconventional therapeutic approach with exchange transfusion.
        JIMD Rep. 2014; 13: 59-64https://doi.org/10.1007/8904_2013_272
        • Charrière S.
        • Peretti N.
        • Bernard S.
        • Di Filippo M.
        • Sassolas A.
        • Merlin M.
        • Delay M.
        • Debard C.
        • Lefai E.
        • Lachaux A.
        • Moulin P.
        • Marçais C.
        GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia.
        J. Clin. Endocrinol. Metab. 2011; 96: E1675-E1679https://doi.org/10.1210/jc.2011-1444
        • Stefanutti C.
        • Gozzer M.
        • Pisciotta L.
        • D'Eufemia P.
        • Bosco G.
        • Morozzi C.
        • Papadia F.
        • Shafii M.
        • Di Giacomo S.
        • Bertolini S.
        A three month-old infant with severe hyperchylomicronemia: molecular diagnosis and extracorporeal treatment.
        Atheroscler. Suppl. 2013; 14: 73-76https://doi.org/10.1016/j.atherosclerosissup.2012.10.020
        • Bertolini S.
        • Simone M.L.
        • Pes G.M.
        • Ghisellini M.
        • Rolleri M.
        • Bellocchio A.
        • Elicio N.
        • Masturzo P.
        • Calandra S.
        Pseudodominance of lipoprotein lipase (LPL) deficiency, due to a nonsense mutation (Tyr302>term) in exon 6 of LPL gene in an Italian family from Sardinia (LPLOlbia).
        Clin. Genet. 2000; 57: 140-147https://doi.org/10.1034/j.1399-0004.2000.570209.x
        • Wang J.
        • Cao H.
        • Ban M.R.
        • Kennedy B.A.
        • Zhu S.
        • Anand S.
        • Yusuf S.
        • Pollex R.L.
        • Hegele R.A.
        Resequecing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650).
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 2450-2455https://doi.org/10.1161/ATVBAHA.107.150680
        • Wright W.T.
        • Young I.S.
        • Nicholls D.P.
        • Graham C.A.
        Genetic screening of the LPL gene in hypertriglyceridaemic patients.
        Atherosclerosis. 2008; 199: 187-192https://doi.org/10.1016/j.atherosclerosis.2007.10.029
        • Evans D.
        • Arzer J.
        • Aberle J.
        • Beil F.U.
        Rare variant in the lipoprotein lipase (LPL) gene are common in hypertriglyceridemia but rare in type III hyperlipidemia.
        Atherosclerosis. 2011; 214: 386-390https://doi.org/10.1016/j.atherosclerosis.2010.11.026
        • Surendran R.P.
        • Visser M.E.
        • Heemelaar S.
        • Wang J.
        • Peter J.
        • Defesche J.C.
        • Kuivenhoven J.A.
        • Hosseini M.
        • Péterfy M.
        • Kastelein J.J.
        • Johansen C.T.
        • Hegele R.A.
        • Stroes E.S.
        • Dallinga-Thie G.M.
        Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia.
        J. Intern Med. 2012; 272: 185-196https://doi.org/10.1111/j.1365-2796.2012.02516.x
        • Martin-Campos J.M.
        • Julve J.
        • Roig R.
        • Matinez S.
        • Errico T.L.
        • Martinez-Consuelo S.
        • Escolà-Gil J.C.
        • Méndez-Gonzáles J.
        • Blanco-Vaca F.
        Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency.
        Clin. Chim. Acta. 2014; 429: 61-68https://doi.org/10.1016/j.cca.2013.11.025
        • Scherer J.
        • Singh V.P.
        • Pitchumoni C.S.
        • Yadav D.
        Issues in hypertriglyceridemic pancreatitis: an update.
        J. Clin. Gastroenterol. 2014; 48: 195-203https://doi.org/10.1097/01.mcg.0000436438.60145.5a
        • Valdivielso P.
        • Ramírez-Bueno A.
        • Ewald N.
        Current knowledge of hypertriglyceridemic pancreatitis.
        Eur. J. Intern Med. 2014; 25: 689-694https://doi.org/10.1016/j.ejim.2014.08.008
        • Avis H.J.
        • Scheffer H.J.
        • Kastelein J.J.P.
        • Dallinga-Thie G.M.
        • Wijburg F.A.
        Pink-creamy whole blood in a 3-month-old infant with a homozygous deletion in the lipoprotein lipase gene.
        Clin. Genet. 2010; 77: 430-433https://doi.org/10.1111/j.1399-0004.2009.01369.x
        • Rios J.J.
        • Shastry S.
        • Jasso J.
        • Hauser N.
        • Garg A.
        • Bensadoun A.
        • Cohen J.C.
        • Hobbs H.H.
        Deletion of GPIHBP1 causing severe chylomicronemia.
        J. Inherit. Metab. Dis. 2012; 35: 531-540https://doi.org/10.1007/s10545-011-9406-5
        • Ahmad Z.
        • Wilson D.P.
        Familial chylomicronemia syndrome and response to medium-chain triglyceride therapy in an infant with novel mutations in GPIHBP1.
        J. Clin. Lipidol. 2014; 8: 635-639https://doi.org/10.1016/j.jacl.2014.08.010
        • Buonuomo P.S.
        • Bartuli A.
        • Rabacchi C.
        • Bertolini S.
        • Calandra S.
        A three day-old neonate with severe hypertriglyceridemia due to novel mutations of gpihbp1 gene.
        J. Clin. Lipidol. 2015; 9: 265-270https://doi.org/10.1016/j.jacl.2014.10.003
        • Gaudet D.
        • Méthot J.
        • Déry S.
        • Brisson D.
        • Essiembre C.
        • Tremblay G.
        • Tremblay K.
        • de Wal J.
        • Twisk J.
        • van den Bulk N.
        • Sier-Ferreira V.
        • van Deventer S.
        Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial.
        Gene Ther. 2013; 20: 361-369https://doi.org/10.1038/gt.2012.43