Advertisement

The role of carbonic anhydrase in the pathogenesis of vascular calcification in humans

      Highlights

      • Vascular calcification is frequent and increases the cardiovascular risk in humans.
      • Mechanisms of arterial calcification are similar to those in bone mineralization.
      • Carbonic anhydrase isoenzymes reversibly convert bicarbonate and carbon dioxide.
      • These isoenzymes participates in calcification processes in many biological systems.
      • Carbonic anhydrase may be involved in the development of vascular calcification.

      Abstract

      Carbonic anhydrases are a group of isoenzymes that catalyze the reversible conversion of carbon dioxide into bicarbonate. They participate in a constellation of physiological processes in humans, including respiration, bone metabolism, and the formation of body fluids, including urine, bile, pancreatic juice, gastric secretion, saliva, aqueous humor, cerebrospinal fluid, and sweat. In addition, carbonic anhydrase may provide carbon dioxide/bicarbonate to carboxylation reactions that incorporate carbon dioxide to substrates. Several isoforms of carbonic anhydrase have been identified in humans, but their precise physiological role and the consequences of their dysfunction are mostly unknown. Carbonic anhydrase isoenzymes are involved in calcification processes in a number of biological systems, including the formation of calcareous spicules from sponges, the formation of shell in some animals, and the precipitation of calcium salts induced by several microorganisms, particularly urease-producing bacteria. In human tissues, carbonic anhydrase is implicated in calcification processes either directly by facilitating calcium carbonate deposition which in turn serves to facilitate calcium phosphate mineralization, or indirectly via its action upon γ-glutamyl-carboxylase, a carboxylase that enables the biological activation of proteins involved in calcification, such as matrix Gla protein, bone Gla protein, and Gla-rich protein. Carbonic anhydrase is implicated in calcification of human tissues, including bone and soft-tissue calcification in rheumatological disorders such as ankylosing spondylitis and dermatomyositis. Carbonic anhydrase may be also involved in bile and kidney stone formation and carcinoma-associated microcalcifications. The aim of this review is to evaluate the possible association between carbonic anhydrase isoenzymes and vascular calcification in humans.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Whitson J.T.
        Glaucoma: a review of adjunctive therapy and new management strategies.
        Expert Opin. Pharmacother. 2007; 8: 3237-3249
        • Stadelmann K.
        • Latshang T.D.
        • Nussbaumer-Ochsner Y.
        • et al.
        Impact of acetazolamide and CPAP on cortical activity in obstructive sleep apnea patients.
        PLoS One. 2014; 9: e93931
        • Burtscher M.
        • Gatterer H.
        • Faulhaber M.
        • Burtscher J.
        Acetazolamide pre-treatment before ascending to high altitudes: when to start?.
        Int. J. Clin. Exp. Med. 2014; 7: 4378-4383
        • Rheims S.
        • Ryvlin P.
        Pharmacotherapy for tonic-clonic seizures.
        Expert Opin. Pharmacother. 2014; 15: 1417-1426
        • Moviat M.
        • Pickkers P.
        • van der Voort P.H.
        • van der Hoeven J.G.
        Acetazolamide-mediated decrease in strong ion difference accounts for the correction of metabolic alkalosis in critically ill patients.
        Crit. Care. 2006; 10: R14
        • Eliasson B.
        • Gudbjornsdottir S.
        • Cederholm J.
        • Liang Y.
        • Vercruysse F.
        • Smith U.
        Weight loss and metabolic effects of topiramate in overweight and obese type 2 diabetic patients: randomized double-blind placebo-controlled trial.
        Int. J. Obes. (Lond). 2007; 31: 1140-1147
        • Seidelmann S.B.
        • Lighthouse J.K.
        • Greif D.M.
        Development and pathologies of the arterial wall.
        Cell. Mol. Life Sci. 2014; 71: 1977-1999
        • Osidak M.S.
        • Osidak E.O.
        • Akhmanova M.A.
        • Domogatsky S.P.
        • Domogatskaya A.S.
        Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.
        Curr. Pharm. Des. 2015; 21: 1124-1133
        • Stary H.C.
        Natural history and histological classification of atherosclerotic lesions: an update.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1177-1178
        • Otsuka F.
        • Sakakura K.
        • Yahagi K.
        • Joner M.
        • Virmani R.
        Has our understanding of calcification in human coronary atherosclerosis progressed?.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 724-736
        • Goodman W.G.
        • London G.
        • Amann K.
        • et al.
        Vascular calcification in chronic kidney disease.
        Am. J. Kidney Dis. 2004; 43: 572-579
        • Niskanen L.
        • Siitonen O.
        • Suhonen M.
        • Uusitupa M.I.
        Medial artery calcification predicts cardiovascular mortality in patients with NIDDM.
        Diabetes Care. 1994; 17: 1252-1256
        • Costacou T.
        • Huskey N.D.
        • Edmundowicz D.
        • Stolk R.
        • Orchard T.J.
        Lower-extremity arterial calcification as a correlate of coronary artery calcification.
        Metabolism. 2006; 55: 1689-1696
        • Iribarren C.
        • Sidney S.
        • Sternfeld B.
        • Browner W.S.
        Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease.
        JAMA. 2000; 283: 2810-2815
        • Rennenberg R.J.
        • Kessels A.G.
        • Schurgers L.J.
        • van Engelshoven J.M.
        • de Leeuw P.W.
        • Kroon A.A.
        Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis.
        Vasc. Health Risk Manag. 2009; 5: 185-197
        • Hofmann Bowman M.A.
        • McNally E.M.
        Genetic pathways of vascular calcification.
        Trends Cardiovasc Med. 2012; 22: 93-98
        • Kim K.M.
        Calcification of matrix vesicles in human aortic valve and aortic media.
        Fed. Proc. 1976; 35: 156-162
        • Tanimura A.
        • McGregor D.H.
        • Anderson H.C.
        Matrix vesicles in atherosclerotic calcification.
        Proc. Soc. Exp. Biol. Med. 1983; 172: 173-177
        • Evrard S.
        • Delanaye P.
        • Kamel S.
        • Cristol J.P.
        • Cavalier E.
        Vascular calcification: from pathophysiology to biomarkers.
        Clin. Chim. Acta. 2015; 438: 401-414
        • Alves R.D.
        • Eijken M.
        • van de Peppel J.
        • van Leeuwen J.P.
        Calcifying vascular smooth muscle cells and osteoblasts: independent cell types exhibiting extracellular matrix and biomineralization-related mimicries.
        BMC Genomics. 2014; 15: 965
        • Halverson P.B.
        • McCarty D.J.
        Clinical aspects of basic calcium phosphate crystal deposition.
        Rheum. Dis. Clin. North Am. 1988; 14: 427-439
        • Schmid K.
        • McSharry W.O.
        • Pameijer C.H.
        • Binette J.P.
        Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta.
        Atherosclerosis. 1980; 37: 199-210
        • Carlstrom D.
        • Engfeldt B.
        • Engstrom A.
        • Ringertz N.
        Studies on the chemical composition of normal and abnormal blood vessel walls. I. Chemical nature of vascular calcified deposits.
        Lab. Invest. 1953; 2: 325-335
        • Li Q.
        • Jiang Q.
        • Uitto J.
        Ectopic mineralization disorders of the extracellular matrix of connective tissue: molecular genetics and pathomechanisms of aberrant calcification.
        Matrix Biol. 2014; 33: 23-28
        • Li Q.
        • Brodsky J.L.
        • Conlin L.K.
        • et al.
        Mutations in the ABCC6 gene as a cause of generalized arterial calcification of infancy: genotypic overlap with pseudoxanthoma elasticum.
        J. Invest Dermatol. 2014; 134: 658-665
        • Varadi A.
        It is all about calcification.
        Cell Cycle. 2014; 13: 3793
        • Davis M.B.
        • West L.F.
        • Barlow J.H.
        • Butterworth P.H.
        • Lloyd J.C.
        • Edwards Y.H.
        Regional localization of carbonic anhydrase genes CA1 and CA3 on human chromosome 8.
        Somat. Cell. Mol. Genet. 1987; 13: 173-178
        • Sly W.S.
        • Hewett-Emmett D.
        • Whyte M.P.
        • Yu Y.S.
        • Tashian R.E.
        Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification.
        Proc. Natl. Acad. Sci. USA. 1983; 80: 2752-2756
        • Okuyama T.
        • Batanian J.R.
        • Sly W.S.
        Genomic organization and localization of gene for human carbonic anhydrase IV to chromosome 17q.
        Genomics. 1993; 16: 678-684
        • Nagao Y.
        • Platero J.S.
        • Waheed A.
        • Sly W.S.
        Human mitochondrial carbonic anhydrase: cDNA cloning, expression, subcellular localization, and mapping to chromosome 16.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 7623-7627
        • Fujikawa-Adachi K.
        • Nishimori I.
        • Taguchi T.
        • Onishi S.
        Human carbonic anhydrase XIV (CA14): cDNA cloning, mRNA expression, and mapping to chromosome 1.
        Genomics. 1999; 61: 74-81
        • Sutherland G.R.
        • Baker E.
        • Fernandez K.E.
        • et al.
        The gene for human carbonic anhydrase VI(CA6) is on the tip of the short arm of chromosome 1.
        Cytogenet Cell Genet. 1989; 50: 149-150
        • Montgomery J.C.
        • Venta P.J.
        • Eddy R.L.
        • Fukushima Y.S.
        • Shows T.B.
        • Tashian R.E.
        Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16.
        Genomics. 1991; 11: 835-848
        • Kivela A.J.
        • Parkkila S.
        • Saarnio J.
        • et al.
        Expression of transmembrane carbonic anhydrase isoenzymes IX and XII in normal human pancreas and pancreatic tumours.
        Histochem. Cell Biol. 2000; 114: 197-204
        • Tureci O.
        • Sahin U.
        • Vollmar E.
        • et al.
        Human carbonic anhydrase XII: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 7608-7613
        • Feinstein Y.
        • Yerushalmi B.
        • Loewenthal N.
        • et al.
        Natural history and clinical manifestations of hyponatremia and hyperchlorhidrosis due to carbonic anhydrase XII deficiency.
        Horm. Res. Paediatr. 2014; 81: 336-342
        • Kummola L.
        • Hamalainen J.M.
        • Kivela J.
        • et al.
        Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa.
        BMC Cancer. 2005; 5: 41
        • Hilvo M.
        • Tolvanen M.
        • Clark A.
        • et al.
        Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase.
        Biochem. J. 2005; 392: 83-92
        • Kaya N.
        • Aldhalaan H.
        • Al-Younes B.
        • et al.
        Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII.
        Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011; 156B: 826-834
        • Hsieh M.
        • Chang W.H.
        • Hsu C.F.
        • Nishimori I.
        • Kuo C.L.
        • Minakuchi T.
        Altered expression of carbonic anhydrase-related protein XI in neuronal cells expressing mutant ataxin-3.
        Cerebellum. 2013; 12: 338-349
        • Dhami N.K.
        • Reddy M.S.
        • Mukherjee A.
        Application of calcifying bacteria for remediation of stones and cultural heritages.
        Front. Microbiol. 2014; 5: 304
        • Dhami N.K.
        • Reddy M.S.
        • Mukherjee A.
        Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization.
        Appl. Biochem. Biotechnol. 2014; 172: 2552-2561
        • Müller W.E.
        • Wang X.
        • Grebenjuk V.A.
        • et al.
        Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge.
        PLoS One. 2012; 7: e34617
        • Muller W.E.
        • Schroder H.C.
        • Schlossmacher U.
        • Grebenjuk V.A.
        • Ushijima H.
        • Wang X.
        Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation.
        Biomaterials. 2013; 34: 8671-8680
        • Muller W.E.
        • Schlossmacher U.
        • Schroder H.C.
        • et al.
        Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.
        Acta Biomater. 2014; 10: 450-462
        • Wang X.
        • Schroder H.C.
        • Muller W.E.
        Biocalcite, a multifunctional inorganic polymer: building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone.
        Beilstein J. Nanotechnol. 2014; 5: 610-621
        • Wang X.
        • Schroder H.C.
        • Muller W.E.
        Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.
        Int. Rev. Cell. Mol. Biol. 2014; 313: 27-77
        • Wang X.
        • Schroder H.C.
        • Muller W.E.
        Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine.
        Trends Biotechnol. 2014; 32: 441-447
        • Wang X.
        • Schroder H.C.
        • Schlossmacher U.
        • et al.
        Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate.
        Calcif. Tissue Int. 2014; 94: 495-509
        • Ramanan R.
        • Kannan K.
        • Sivanesan S.
        • et al.
        Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii.
        World J. Microbiol. Biotech. 2009; 25: 981-987
        • Ramanan R.
        • Kannan K.
        • Deshkar A.
        • Yadav R.
        • Chakrabarti T.
        Enhanced algal CO(2) sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond.
        Bioresour. Technol. 2010; 101: 2616-2622
        • Mirjafari P.
        • Asghari K.
        • Mahinpey N.
        Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes.
        Industrial Eng. Chem. Res. 2007; 46: 921-926
        • Li W.
        • Chen W.S.
        • Zhou P.P.
        • Cao L.
        • Yu L.J.
        Influence of initial pH on the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase.
        Colloids Surf. B Biointerfaces. 2013; 102: 281-287
        • Muller W.E.
        • Schroder H.C.
        • Schlossmacher U.
        • et al.
        The enzyme carbonic anhydrase as an integral component of biogenic Ca-carbonate formation in sponge spicules.
        FEBS Open Biol. 2013; 3: 357-362
        • Ebanks S.C.
        • O'Donnell M.J.
        • Grosell M.
        Characterization of mechanisms for Ca2+ and HCO3(-)/CO3(2-) acquisition for shell formation in embryos of the freshwater common pond snail Lymnaea stagnalis.
        J. Exp. Biol. 2010; 213: 4092-4098
        • Soe K.
        • Merrild D.M.
        • Delaisse J.M.
        Steering the osteoclast through the demineralization-collagenolysis balance.
        Bone. 2013; 56: 191-198
        • Poole K.E.
        • van Bezooijen R.L.
        • Loveridge N.
        • et al.
        Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation.
        FASEB J. 2005; 19: 1842-1844
        • Kogawa M.
        • Wijenayaka A.R.
        • Ormsby R.T.
        • et al.
        Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2.
        J. Bone Min. Res. 2013; 28: 2436-2448
        • Chang X.
        • Han J.
        • Zhao Y.
        • Yan X.
        • Sun S.
        • Cui Y.
        Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis.
        BMC Musculoskelet. Disord. 2010; 11: 279
        • Chang X.
        • Yan X.
        • Zhang Y.
        Treat ankylosing spondylitis with methazolamide.
        Int. J. Med. Sci. 2011; 8: 413-419
        • Finer G.
        • Price H.E.
        • Shore R.M.
        • White K.E.
        • Langman C.B.
        Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms.
        Am. J. Med. Genet. A. 2014; 164A: 1545-1549
        • Ismail E.A.
        • Abul Saad S.
        • Sabry M.A.
        Nephrocalcinosis and urolithiasis in carbonic anhydrase II deficiency syndrome.
        Eur. J. Pediatr. 1997; 156: 957-962
        • Juvonen T.
        • Parkkila S.
        • Parkkila A.K.
        • et al.
        High-activity carbonic anhydrase isoenzyme (CA II) in human gallbladder epithelium.
        J. Histochem. Cytochem. 1994; 42: 1393-1397
        • Ayari H.
        • Bricca G.
        Microarray analysis reveals overexpression of IBSP in human carotid plaques.
        Adv. Med. Sci. 2012; 57: 334-340
        • Presnell S.R.
        • Stafford D.W.
        The vitamin K-dependent carboxylase.
        Thromb. Haemost. 2002; 87: 937-946
        • Lian J.B.
        • Skinner M.
        • Glimcher M.J.
        • Gallop P.
        The presence of gamma-carboxyglutamic acid in the proteins associated with ectopic calcification.
        Biochem. Biophys. Res. Commun. 1976; 73: 349-355
        • Levy R.J.
        • Zenker J.A.
        • Lian J.B.
        Vitamin K-dependent calcium binding proteins in aortic valve calcification.
        J. Clin. Invest. 1980; 65: 563-566
        • Chatrou M.L.
        • Winckers K.
        • Hackeng T.M.
        • Reutelingsperger C.P.
        • Schurgers L.J.
        Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists.
        Blood Rev. 2012; 26: 155-166
        • Spronk H.M.
        • Soute B.A.
        • Schurgers L.J.
        • et al.
        Matrix Gla protein accumulates at the border of regions of calcification and normal tissue in the media of the arterial vessel wall.
        Biochem. Biophys. Res. Commun. 2001; 289: 485-490
        • Munroe P.B.
        • Olgunturk R.O.
        • Fryns J.P.
        • et al.
        Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome.
        Nat. Genet. 1999; 21: 142-144
        • Meier M.
        • Weng L.P.
        • Alexandrakis E.
        • Ruschoff J.
        • Goeckenjan G.
        Tracheobronchial stenosis in Keutel syndrome.
        Eur. Respir. J. 2001; 17: 566-569
        • Herrmann S.M.
        • Whatling C.
        • Brand E.
        • et al.
        Polymorphisms of the human matrix gla protein (MGP) gene, vascular calcification, and myocardial infarction.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2386-2393
        • Brancaccio D.
        • Biondi M.L.
        • Gallieni M.
        • et al.
        Matrix GLA protein gene polymorphisms: clinical correlates and cardiovascular mortality in chronic kidney disease patients.
        Am. J. Nephrol. 2005; 25: 548-552
        • Braam L.A.
        • Dissel P.
        • Gijsbers B.L.
        • et al.
        Assay for human matrix gla protein in serum: potential applications in the cardiovascular field.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1257-1261
        • Jono S.
        • Ikari Y.
        • Vermeer C.
        • et al.
        Matrix Gla protein is associated with coronary artery calcification as assessed by electron-beam computed tomography.
        Thromb. Haemost. 2004; 91: 790-794
        • Koos R.
        • Krueger T.
        • Westenfeld R.
        • et al.
        Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification.
        Thromb. Haemost. 2009; 101: 706-713
        • Shea M.K.
        • O'Donnell C.J.
        • Vermeer C.
        • et al.
        Circulating uncarboxylated matrix gla protein is associated with vitamin K nutritional status, but not coronary artery calcium, in older adults.
        J. Nutr. 2011; 141: 1529-1534
        • Theuwissen E.
        • Smit E.
        • Vermeer C.
        The role of vitamin K in soft-tissue calcification.
        Adv. Nutr. 2012; 3: 166-173
        • Dalmeijer G.W.
        • van der Schouw Y.T.
        • Magdeleyns E.J.
        • et al.
        Circulating species of matrix Gla protein and the risk of vascular calcification in healthy women.
        Int. J. Cardiol. 2013; 168: e168-170
        • van den Heuvel E.G.
        • van Schoor N.M.
        • Lips P.
        • et al.
        Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease.
        Maturitas. 2014; 77: 137-141
        • Viegas C.S.
        • Rafael M.S.
        • Enriquez J.L.
        • et al.
        Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 399-408
        • Viegas C.S.
        • Cavaco S.
        • Neves P.L.
        • et al.
        Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications.
        Am. J. Pathol. 2009; 175: 2288-2298
        • Manfioletti G.
        • Brancolini C.
        • Avanzi G.
        • Schneider C.
        The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade.
        Mol. Cell. Biol. 1993; 13: 4976-4985
        • Saccone S.
        • Marcandalli P.
        • Gostissa M.
        • Schneider C.
        • Della Valle G.
        Assignment of the human GAS6 gene to chromosome 13q34 by fluorescence in situ hybridization.
        Genomics. 1995; 30: 129-131
        • Clauser S.
        • Meilhac O.
        • Bieche I.
        • et al.
        Increased secretion of Gas6 by smooth muscle cells in human atherosclerotic carotid plaques.
        Thromb. Haemost. 2012; 107: 140-149
        • Lee C.H.
        • Shieh Y.S.
        • Tsai C.S.
        • Hung Y.J.
        • Tsai Y.T.
        • Lin C.Y.
        Expression of growth arrest-specific protein 6 and Axl molecules in the left internal mammary artery of patients undergoing coronary artery bypass grafting.
        J. Clin. Pathol. 2014; 67: 506-511
        • Borgel D.
        • Durand E.
        • Clauser S.
        • et al.
        Plasma Gas6 levels and coronary artery disease.
        Thromb. Haemost. 2009; 101 (Germany): 215-216
        • Levy R.J.
        • Lian J.B.
        • Gallop P.
        Atherocalcin, a gamma-carboxyglutamic acid containing protein from atherosclerotic plaque.
        Biochem. Biophys. Res. Commun. 1979; 91: 41-49
        • Levy R.J.
        • Gundberg C.
        • Scheinman R.
        The identification of the vitamin K-dependent bone protein osteocalcin as one of the gamma-carboxyglutamic acid containing proteins present in calcified atherosclerotic plaque and mineralized heart valves.
        Atherosclerosis. 1983; 46: 49-56
        • Puchacz E.
        • Lian J.B.
        • Stein G.S.
        • Wozney J.
        • Huebner K.
        • Croce C.
        Chromosomal localization of the human osteocalcin gene.
        Endocrinology. 1989; 124: 2648-2650
        • Emaus N.
        • Nguyen N.D.
        • Almaas B.
        • et al.
        Serum level of under-carboxylated osteocalcin and bone mineral density in early menopausal Norwegian women.
        Eur. J. Nutr. 2013; 52: 49-55
        • Maser R.E.
        • Lenhard M.J.
        • Sneider M.B.
        • Pohlig R.T.
        Osteoprotegerin is a better serum biomarker of coronary artery calcification scores than osteocalcin in type 2 diabetes.
        Endocr. Pract. 2014; : 1-28
        • Kulman J.D.
        • Harris J.E.
        • Haldeman B.A.
        • Davie E.W.
        Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins.
        Proc. Natl. Acad. Sci. USA. 1997; 94: 9058-9062