Advertisement

Oxidative stress and paraoxonase 1 status in acute ischemic stroke patients

      Highlights

      • Stroke patients had pronounced oxidative stress and abated antioxidative protection.
      • Stroke patients had remarkable fall in protective PON1 activity.
      • Patients, HDL fraction analysis revealed structural changes.
      • Oxidative stress caused HDL structural changes lead to PON1 activity blockade.

      Abstract

      Objective

      The connection of oxidative stress with dyslipidemia creates a newly-emerging atherosclerosis risk factor involved in acute ischemic stroke development. This study analyzed the influence of oxidative stress on structural changes of high-density lipoprotein (HDL) particles connected with modification in protective paraoxonase 1 (PON1) activity.

      Methods

      This study used 185 patients with acute ischemic stroke and 185 apparently healthy controls. Oxidative stress status, PON1 status, lipids and high-sensitivity C-reactive protein (hsCRP) were determined. In isolated HDL lipoprotein fraction we determined selected markers of oxidative stress (malondialdehyde, MDA) and the content of total sulfhydryl (SH) groups. The capability of oxidative and PON1 status parameters to discriminate patients according to survival status was evaluated.

      Results

      Stroke patients had lower HDL-cholesterol than controls and a remarkable fall in PON1 activity (control group-227 U/L, survivors-42 U/L, lethal outcome group-61 U/L, p < 0.001), along with more prominent inflammation. Pronounced oxidative stress and impaired antioxidative protection was present among patients. HDL fraction analysis revealed a significant decrease of SH groups content (control group vs. patients, p < 0.05) and increased in MDA content in patients (lethal outcome vs. control group, p < 0.05). According to logistic regression analysis, the best predictor of disease outcome was oxidative stress marker – prooxidative-antioxidative balance (PAB).

      Conclusions

      Pronounced oxidative stress in this group of acute ischemic stroke patients probably led to HDL structural changes, which could further cause an alteration or decrease of PON1 activity. Evidence of increased prooxidant level associated with decreased protective, antioxidative factors suggests their mutual involvement in this complex pathology.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chan P.H.
        Role of oxidants in ischemic brain damage.
        Stroke. 1996; 27: 1124-1129
        • El Kossi M.M.H.
        • Zakhary M.M.
        Oxidative stress in the context of acute cerebrovascular stroke.
        Stroke. 2000; 31: 1889-1892
        • Cherubini A.
        • Ruggiero C.
        • Polidori C.M.
        • Mecocci P.
        Potential markers of oxidative stress in stroke.
        Free Radical Biol. Med. 2005; 39: 841-852
        • Murakami K.
        • Kondo T.
        • Kawase M.
        • Li Y.
        • Sato S.
        • Chen S.F.
        • Chan P.H.
        Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency.
        J. Neurosci. 1998; 18: 205-213
        • Fujimura M.
        • Morita-Fujimura Y.
        • Kawase M.
        • Copin J.C.
        • Calagui B.
        • Epstein C.J.
        • Chan P.H.
        Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice.
        J. Neurosci. 1999; 19: 3414-3422
        • Mertens A.
        • Verhame P.
        • Bielicki J.
        • Phillips M.
        • Quarck R.
        • Verreth W.
        • Strengel D.
        • Ninio E.
        • Navab M.
        • Mackness B.
        • Mackness M.
        • Holwoet P.
        Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis.
        Circulation. 2003; 107: 1640-1646
        • Ng D.S.
        The role of LCAT in atherosclerosis.
        (chapter 2)in: Biochemistry of Atherosclerosis. vol. XV. 2006: 23-38
        • Alamdari D.H.
        • Paletas K.
        • Pegiou T.
        • Sarigianni M.
        • Befani C.
        • Koliakos G.
        A novel assay for the evaluation of the prooxidant-antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients.
        Clin. Biochem. 2007; 40: 248-254
        • Erel O.
        A new automated colorimetric method for measuring total oxidant status.
        Clin. Biochem. 2005; 38: 1103-1111
        • Erel O.
        A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation.
        Clin. Biochem. 2004; 37: 277-285
        • Girotti M.J.
        • Khan N.
        • Mc Lellan B.A.
        Early measurement of systemic lipid peroxidation products in plasma of major blunt trauma patients.
        J. Trauma. 1991; 31: 32-35
        • Auclair C.
        • Voisin E.
        Nitroblue tetrazolium reduction.
        in: Greenwald R.A. CRC Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, FL1985: 123-132
        • Gay C.A.
        • Gebicki J.M.
        Measurement of protein and lipid hydroperoxides in biological systems by ferric-xylenol orange method.
        Anal. Biochem. 2003; 315: 29-35
        • Witko-Sarsat V.
        • Nguyen M.
        • Capeillere-Blandin C.
        • Nguyen A.T.
        • Zingraff J.
        Advanced oxidation protein products as a novel marker of oxidative stress in uremia.
        Kidney Int. 1996; 49: 1304-1313
        • Richter R.J.
        • Furlong C.E.
        Determination of paraoxonase (PON1) status requires more than genotyping.
        Pharmacogenetics. 1999; 9: 745-753
        • Misra H.P.
        • Fridovich I.
        Chemistry and metabolism of substances of low molecular weight: the role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.
        J. Biol. Chem. 1972; 247: 3170-3175
        • Ellman G.I.
        Tissue sulfhydril groups.
        Arch. Biochem. Biophys. 1959; 82: 70-77
        • Vergeer M.
        • Holleboom A.G.
        • Kastelein J.P.
        • Kuivenhoven J.A.
        The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis?.
        J. Lipid Res. 2010; 51: 2058-2073
        • Wannamethee S.G.
        • Shaper A.G.
        • Ebrahim S.
        HDL-cholesterol, total cholesterol, and the risk of stroke in middle-aged British men.
        Stroke. 2000; 31: 1882-1888
        • Araujo aB.
        • Chiu G.R.
        • Christian J.B.
        • Kim H.Y.
        • Evans W.J.
        • Clark R.V.
        Longitudinal changes in high-density lipoprotein cholesterol and cardiovascular events in older adults.
        Clin. Endocrinol. 2014; 80: 662-670
        • Bots M.L.
        • Elwood P.C.
        • Nikitin Y.
        • Salonen J.T.
        • Concalves A.F.
        • Inzitari D.
        • Sivenius J.
        • Benetou V.
        • Tuomilehto J.
        • Koudstaal P.J.
        • Grobbee D.E.
        Total and HDL cholesterol and risk of stroke. EUROSTROKE: a collaborative study among research centres in Europe.
        J. Epidemiol. Community Health. 2002; 56: i19-i25
        • Stocker R.
        • Keaney J.F.
        Role of oxidative modifications in atherosclerosis.
        Physiol. Rev. 2004; 84: 1381-1478
        • Szöcs K.
        • Lassègue B.
        • Hilenski L.L.
        • Valppu L.
        • Couse T.L.
        • Wilcox J.N.
        • Quinn M.T.
        • Lambeth D.J.
        • Griendling K.K.
        Upregulation of NOX-based NADPH oxidases in restenosis after carotid injury.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 21-27
        • Cai H.
        • Harrison D.G.
        Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress.
        Circ. Res. 2000; 87: 840-844
        • Braughler J.M.
        • Hall E.D.
        Central nervous system trauma and stroke: I- biochemical considerations for oxygen radical formation and lipid peroxidation.
        Free Radical Biol. Med. 1989; 6: 289-301
        • Chan P.H.
        Role of oxidants in ischemic brain injury.
        Stroke. 1996; 27: 1124-1129
        • Bruce-Keller A.J.
        • Li Y.-J.
        • Lovell A.
        • Kramer P.J.
        • Gray D.S.
        • Brown R.R.
        • Marksberry W.R.
        • Mattson M.P.
        4-hydroxinonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visio-spatial memory in rat.
        J. Neuropathol. Exp. Neurol. 1998; 57: 257-267
        • Madamanchi
        • Vendrov A.
        • Runge M.S.
        Oxidative stress and vascular disease.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 29-38
        • Facchineti F.
        • Dawson V.L.
        • Dawson T.M.
        Free radicals as mediators of neuronal injury.
        Cell. Mol. Neurobiol. 1998; 18: 667-682
        • Warner D.S.
        • Sheng H.
        • Batinic-Haberle I.
        Oxidants, antioxidants and the ischemic brain.
        J. Exp. Biol. 2004; 207: 3221-3231
        • Fukui S.
        • Ookawara T.
        • Nawashiro H.
        • Suzuki K.
        • Shima K.
        Post-ischemic transcriptional and translational responses of EC-SOD in mouse brain and serum.
        Free Radical Biol. Med. 2002; 32: 289-298
        • Namba K.
        • Takeda Y.
        • Sunami K.
        • Hirakawa M.
        Temporal profile of the levels of endogenous antioxidants after four-vessel occlusion in rats.
        J. Neurosurg. Anesthesiol. 2001; 13: 131-137
        • Kontush A.
        • Chapman J.
        Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis.
        Pharmacol. Rev. 2006; 58: 342-374
        • Kontush A.
        • Cotta de Faria E.
        • Chantepie S.
        • Chapman J.M.
        A normotriglyceridemic, low HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL particles with attenuated antioxidative activity.
        Atherosclerosis. 2005; 285: 277-285
        • Jarvik G.P.
        • Rozek L.S.
        • Brophy V.H.
        • Hatsukami T.S.
        • Richter R.J.
        • Schellenberg G.D.
        • Furlong C.E.
        Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1192 or PON155 genotype.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2441-2447
        • Voetsch B.
        • Benke K.S.
        • Damasceno B.P.
        • Siqueira L.H.
        • Loscalzo J.
        Paraoxonase 192 Gln-Arg polimorphism: an independent risk factor for nonfatal arterial ischemic stroke among young adults.
        Stroke. 2002; 33: 1459-1464
        • Guo J.M.
        • Liu A.J.
        • Su D.F.
        Genetics of stroke.
        Acta Pharm. Sin. 2010; 31: 1055-1064
        • Rozenberg O.
        • Aviram M.
        S-Glutathionylation regulates HDL-associated paraoxonase 1 (PON1) activity.
        Biochem. Biophys. Res. Commun. 2006; 351: 492-498
        • Kotur-Stevuljevic J.
        • Spasic S.
        • Stefanovic A.
        • Zeljkovic A.
        • Bogavac-Stanojevic N.
        • Kalimanovska-Ostric D.
        • et al.
        Paraoxonase-1 (PON1) activity, but not PON1Q192R phenotype, is a predictor of coronary artery disease in a middle-aged Serbian population.
        Clin. Chem. Lab. Med. 2006; 44: 1206-1213
        • Liu T.
        • Zhang X.
        • Zhang J.
        • Liang Z.
        • Cai W.
        • Huang M.
        • Yan C.
        • Zhu Z.
        • Han Y.
        Association between PON1 rs662 polymorphism and coronary artery disease.
        Eur. J. Clin. Nutr. 2014; 68: 1029-1035
        • Parizadeh M.R.
        • Azarpazhooh M.R.
        • Mobarra N.
        • Nematy M.
        • Alamdari D.H.
        • Tavalaie S.
        • Sahebkar A.
        • Hassankhani B.
        • Ferns G.
        • Ghayour-Mobarhan M.
        Prooxidant-antioxidant balance in stroke patients and 6-month prognosis.
        Clin. Lab. 2011; 57: 183-191
        • Kotur-Stevuljevic J.
        • Memon L.
        • Stefanovic A.
        • Spasic S.
        • Spasojevic-Kalimanovska V.
        • Bogavac-Stanojevic N.
        • et al.
        Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients.
        Clin. Biochem. 2007; 40: 181-187
        • Gugliucci A.
        • Caccavello R.
        • Kotani K.
        • Sakane N.
        • Kimura S.
        Enzymatic assessment of paraoxonase 1 activity on HDL subclasses: a practical zymogram method to assess HDL function.
        Clin. Chim. Acta. 2013; 415: 162-168
        • Zeljkovic A.
        • Vekic J.
        • Spasojevic-Kalimanovska V.
        • Jelic-Ivanovic Z.
        • Bogavac-Stanojevic N.
        • Gulan B.
        • Spasic S.
        LDL and HDL subclasses in acute ischemic stroke: prediction of risk and short-term mortality.
        Atherosclerosis. 2010; 210: 548-554