Advertisement

Major changes in the sphingophospholipidome of HDL in non-diabetic patients with metabolic syndrome

  • Damien Denimal
    Affiliations
    National Institute of Health and Medical Research Unit 866, University of Bourgogne and Franche Comté, Faculty of Health Sciences, Dijon, France

    Department of Biochemistry, University Hospital Dijon, Dijon, France
    Search for articles by this author
  • Amandine Nguyen
    Affiliations
    Department of Endocrinology and Metabolic Diseases, University Hospital Dijon, Dijon, France
    Search for articles by this author
  • Jean-Paul Pais de Barros
    Affiliations
    Lipidomic Platform, University of Bourgogne and Franche Comté, Dijon, France
    Search for articles by this author
  • Benjamin Bouillet
    Affiliations
    National Institute of Health and Medical Research Unit 866, University of Bourgogne and Franche Comté, Faculty of Health Sciences, Dijon, France

    Department of Endocrinology and Metabolic Diseases, University Hospital Dijon, Dijon, France
    Search for articles by this author
  • Jean-Michel Petit
    Affiliations
    National Institute of Health and Medical Research Unit 866, University of Bourgogne and Franche Comté, Faculty of Health Sciences, Dijon, France

    Department of Endocrinology and Metabolic Diseases, University Hospital Dijon, Dijon, France
    Search for articles by this author
  • Bruno Vergès
    Affiliations
    National Institute of Health and Medical Research Unit 866, University of Bourgogne and Franche Comté, Faculty of Health Sciences, Dijon, France

    Department of Endocrinology and Metabolic Diseases, University Hospital Dijon, Dijon, France
    Search for articles by this author
  • Laurence Duvillard
    Correspondence
    Corresponding author. Biochimie Médicale, Plateau Technique de Biologie, 2, rue Angélique Ducoudray, BP 37013 21070, Dijon Cédex, France.
    Affiliations
    National Institute of Health and Medical Research Unit 866, University of Bourgogne and Franche Comté, Faculty of Health Sciences, Dijon, France

    Department of Biochemistry, University Hospital Dijon, Dijon, France
    Search for articles by this author

      Highlights

      • In metabolic syndrome without diabetes the HDL2 and HDL3 sphingophospholipidome shows major changes.
      • The proportion of sphingomyelins, plasmalogens and d18:1-sphingosine-1-phosphate is decreased.
      • The proportion of lysophosphatidylcholines and phosphatidylinositols is increased.
      • These changes could contribute to the impaired functionality of HDL in metabolic syndrome.
      • C18:2 fatty acid-containing phospholipids are decreased and C20:4 fatty acid-containing ones are increased.

      Abstract

      Objective

      Phospholipids and sphingolipids play a critical role in the protective effects of HDL against atherosclerosis. These properties are impaired in patients with metabolic syndrome, before the development of diabetes. We thus investigated whether HDL from patients with metabolic syndrome but normal fasting glycaemia present abnormalities in their sphingophospholipid profile.

      Methods

      Using liquid chromatography/tandem mass spectrometry, we quantified the different species of the main phospholipids and sphingolipids in the HDL2 and HDL3 from 26 obese patients with metabolic syndrome but normal fasting glycaemia and 50 controls.

      Results

      Phosphatidylcholines, when expressed as the relative amount compared with total phospholipids and sphingolipids, were similar in both HDL2 and HDL3 in the two groups. Lysophosphatidylcholines were 41% (p = 0.0002) and 86% (p < 0.0001) higher in HDL2 and HDL3, respectively, from patients with metabolic syndrome than in those from controls. Phosphatidylinositols were also higher in HDL2 and HDL3 (respectively, +60 and + 103% (p < 0.0001)). In contrast, both HDL2 and HDL3 from patients with metabolic syndrome showed lower proportions of phosphatidylethanolamine-based plasmalogens (respectively −78 and −73%, p < 0.0001), phosphatidylcholine-based plasmalogens (respectively −44 and −53%, p < 0.0001), d18:1-sphingosine-1-phosphate (respectively −52 and −38%, p < 0.0001) and sphingomyelins (respectively −19% (p < 0.0001) and −24% (p = 0.0006)), than did controls. Moreover, we observed a decrease in C18:2 fatty acid-containing phospholipids and an increase in C20:4 fatty acid-containing phospholipids.

      Conclusion

      The sphingophospholipidome of HDL from normoglycaemic obese patients with metabolic syndrome is profoundly modified, before the dysregulation of glycaemia. Most of the changes observed have pejorative effect in terms of vascular protection.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pischon T.
        • Boeing H.
        • Hoffmann K.
        • Bergmann M.
        • Schulze M.B.
        • Overvad K.
        • et al.
        General and abdominal adiposity and risk of death in Europe.
        N. Engl. J. Med. 2008; 359: 2105-2120
        • Moe B.
        • Mork P.J.
        • Holtermann A.
        • Nilsen T.I.
        Occupational physical activity, metabolic syndrome and risk of death from all causes and cardiovascular disease in the HUNT 2 cohort study.
        Occup. Environ. Med. 2013; 70: 86-90
        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • Dans T.
        • Avezum A.
        • Lanas F.
        • et al.
        INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952
        • Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP)
        Expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III).
        JAMA. 2001; 285: 2486-2497
        • Kontush A.
        • de Faria E.C.
        • Chantepie S.
        • Chapman M.J.
        A normotriglyceridemic, low HDL-cholesterol phenotype is characterised by elevated oxidative stress and HDL particles with attenuated antioxidative activity.
        Atherosclerosis. 2005; 182: 277-285
        • Hansel B.
        • Giral P.
        • Nobecourt E.
        • Chantepie S.
        • Bruckert E.
        • Chapman M.J.
        • et al.
        Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity.
        J. Clin. Endocrinol. Metab. 2004; 89: 4963-4971
        • Perségol L.
        • Vergès B.
        • Gambert P.
        • Duvillard L.
        Inability of HDL from abdominally obese subjects to counteract the inhibitory effect of oxidized LDL on vasorelaxation.
        J. Lipid Res. 2007; 48: 1396-1401
        • Magkos F.
        • Mohammed B.S.
        • Mittendorfer B.
        Plasma lipid transfer enzymes in non-diabetic lean and obese men and women.
        Lipids. 2009; 44: 459-464
        • Ebenbichler C.F.
        • Laimer M.
        • Kaser S.
        • Ritsch A.
        • Sandhofer A.
        • Weiss H.
        • et al.
        Relationship between cholesteryl ester transfer protein and atherogenic lipoprotein profile in morbidly obese women.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 1465-1469
        • Arai T.
        • Yamashita S.
        • Hirano K.
        • Sakai N.
        • Kotani K.
        • Fujioka S.
        • et al.
        Increased plasma cholesteryl ester transfer protein in obese subjects. A possible mechanism for the reduction of serum HDL cholesterol levels in obesity.
        Arterioscler. Thromb. 1994; 14: 1129-1136
        • Kontush A.
        • Therond P.
        • Zerrad A.
        • Couturier M.
        • Négre-Salvayre A.
        • de Souza J.A.
        • et al.
        Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1843-1849
        • Kontush A.
        • Lhomme M.
        • Chapman M.J.
        Unraveling the complexities of the HDL lipidome.
        J. Lipid Res. 2013; 54: 2950-2963
        • Camont L.
        • Lhomme M.
        • Rached F.
        • Le Goff W.
        • Nègre-Salvayre A.
        • Salvayre R.
        • et al.
        Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 2715-2723
        • Argraves K.M.
        • Sethi A.A.
        • Gazzolo P.J.
        • Wilkerson B.A.
        • Remaley A.T.
        • Tybjaerg-Hansen A.
        • et al.
        S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease.
        Lipids Health Dis. 2011; 10: 70
        • Sattler K.
        • Lehmann I.
        • Gräler M.
        • Bröcker-Preuss M.
        • Erbel R.
        • Heusch G.
        • et al.
        HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis.
        Cell. Physiol. Biochem. 2014; 34: 172-184
        • Horter M.J.
        • Sondermann S.
        • Reinecke H.
        • Bogdanski J.
        • Woltering A.
        • Kerber S.
        • et al.
        Associations of HDL phospholipids and paraoxonase activity with coronary heart disease in postmenopausal women.
        Acta Physiol. Scand. 2002; 176: 123-130
        • Meikle P.J.
        • Wong G.
        • Barlow C.K.
        • Weir J.M.
        • Greeve M.A.
        • MacIntosh G.L.
        • et al.
        Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes.
        PLoS One. 2013; 8: e74341
        • Pietiläinen K.H.
        • Sysi-Aho M.
        • Rissanen A.
        • Seppänen-Laakso T.
        • Yki-Järvinen H.
        • Kaprio J.
        • et al.
        Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study.
        PLoS One. 2007; 14: e218
        • Ståhlman M.
        • Fagerberg B.
        • Adiels M.
        • Ekroos K.
        • Chapman J.M.
        • Kontush A.
        • et al.
        Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: impact on small HDL particles.
        Biochim. Biophys. Acta. 2013; 1831: 1609-1617
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • Folch J.
        • Lees M.
        • Sloane Stanley G.H.
        A simple method for the isolation and purification of total lipides from animal tissues.
        J. Biol. Chem. 1957; 22: 497-509
        • Denimal D.
        • Pais de Barros J.P.
        • Petit J.M.
        • Bouillet B.
        • Vergès B.
        • Duvillard L.
        Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration.
        Atherosclerosis. 2015; 241: 752-760
        • Bielawski J.
        • Pierce J.S.
        • Snider J.
        • Rembiesa B.
        • Szulc Z.M.
        • Bielawska A.
        Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry.
        Methods Mol. Biol. 2009; 579: 443-467
        • Nofer J.R.
        • van der Giet M.
        • Tölle M.
        • Wolinska I.
        • von Wnuck Lipinski K.
        • Baba H.A.
        • et al.
        HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3.
        J. Clin. Investig. 2004; 113: 569-581
        • Kimura T.
        • Tomura H.
        • Mogi C.
        • Kuwabara A.
        • Damirin A.
        • Ishizuka T.
        • et al.
        Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells.
        J. Biol. Chem. 2006; 281: 37457-37467
        • Argraves K.M.
        • Gazzolo P.J.
        • Groh E.M.
        • Wilkerson B.A.
        • Matsuura B.S.
        • Twal W.O.
        • et al.
        High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function.
        J. Biol. Chem. 2008; 283: 25074-25081
        • Theilmeier G.
        • Schmidt C.
        • Herrmann J.
        • Keul P.
        • Schäfers M.
        • Herrgott I.
        • et al.
        High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor.
        Circulation. 2006; 114: 1403-1409
        • Yang P.
        • Subbaiah P.V.
        Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.
        Biochim. Biophys. Acta. 2015; 1851: 1327-1336
        • Pont F.
        • Duvillard L.
        • Florentin E.
        • Gambert P.
        • Vergès B.
        High-density lipoprotein apolipoprotein A-I kinetics in obese insulin resistant patients. An in vivo stable isotope study.
        Int. J. Obes. Relat. Metab. Disord. 2002; 26: 1151-1158
        • Subbaiah P.V.
        • Jiang X.C.
        • Belikova N.A.
        • Aizezi B.
        • Huang Z.H.
        • Reardon C.A.
        Regulation of plasma cholesterol esterification by sphingomyelin: effect of physiological variations of plasma sphingomyelin on lecithin-cholesterol acyltransferase activity.
        Biochim. Biophys. Acta. 2012; 1821: 908-913
        • Dullaart R.P.
        • Perton F.
        • Sluiter W.J.
        • de Vries R.
        • van Tol A.
        Plasma lecithin: cholesterol acyltransferase activity is elevated in metabolic syndrome and is an independent marker of increased carotid artery intima media thickness.
        J. Clin. Endocrinol. Metab. 2008; 93: 4860-4866
        • Magkos F.
        • Mohammed B.S.
        • Mittendorfer B.
        Plasma lipid transfer enzymes in non-diabetic lean and obese men and women.
        Lipids. 2009; 44: 459-464
        • Gruppen E.G.
        • Connelly M.A.
        • Otvos J.D.
        • Bakker S.J.
        • Dullaart R.P.
        A novel protein glycan biomarker and LCAT activity in metabolic syndrome.
        Eur. J. Clin. Investig. 2015; 45: 850-859
        • Broniec A.
        • Klosinski R.
        • Pawlak A.
        • Wrona-Krol M.
        • Thompson D.
        • Sarna T.
        Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems.
        Free Radic. Biol. Med. 2011; 50: 892-898
        • Sutter I.
        • Velagapudi S.
        • Othman A.
        • Riwanto M.
        • Manz J.
        • Rohrer L.
        • et al.
        Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL.
        Atherosclerosis. 2015; 241: 539-546
        • Furukawa S.
        • Fujita T.
        • Shimabukuro M.
        • Iwaki M.
        • Yamada Y.
        • Nakajima Y.
        • et al.
        Increased oxidative stress in obesity and its impact on metabolic syndrome.
        J. Clin. Investig. 2004; 114: 1752-1761
        • Keaney Jr., J.F.
        • Larson M.G.
        • Vasan R.S.
        • Wilson P.W.
        • Lipinska I.
        • Corey D.
        • et al.
        Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 434-439
        • Julve J.
        • Pardina E.
        • Pérez-Cuéllar M.
        • Ferrer R.
        • Rossell J.
        • Baena-Fustegueras J.A.
        • et al.
        Bariatric surgery in morbidly obese patients improves the atherogenic qualitative properties of the plasma lipoproteins.
        Atherosclerosis. 2014; 234: 200-205
        • Rana J.S.
        • Arsenault B.J.
        • Després J.P.
        • Côté M.
        • Talmud P.J.
        • Ninio E.
        • et al.
        Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women.
        Eur. Heart J. 2011; 32: 336-344
        • Tzotzas T.
        • Filippatos T.D.
        • Triantos A.
        • Bruckert E.
        • Tselepis A.D.
        • Kiortsis D.N.
        Effects of a low-calorie diet associated with weight loss on lipoprotein-associated phospholipase A2 (Lp-PLA2) activity in healthy obese women.
        Nutr. Metab. Cardiovasc. Dis. 2008; 18: 477-482
        • Rached F.
        • Santos R.D.
        • Camont L.
        • Miname M.H.
        • Lhomme M.
        • Dauteuille C.
        • et al.
        Defective functionality of HDL particles in familial apolipoprotein A-I deficiency: relevance of alterations in HDL lipidome and proteome.
        J. Lipid Res. 2014; 55: 2509-2520
        • Rached F.
        • Lhomme M.
        • Camont L.
        • Gomes F.
        • Dauteuille C.
        • Robillard P.
        • et al.
        Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A.
        Biochim. Biophys. Acta. 2015; 1851: 1254-1261
        • Kowalski G.M.
        • Carey A.L.
        • Selathurai A.
        • Kingwell B.A.
        • Bruce C.R.
        Plasma sphingosine-1-phosphate is elevated in obesity.
        PLoS One. 2013; 8: e72449
        • Caspar-Bauguil S.
        • Fioroni A.
        • Galinier A.
        • Allenbach S.
        • Pujol M.C.
        • Salvayre R.
        • et al.
        Pro-inflammatory phospholipid arachidonic acid/eicosapentaenoic acid ratio of dysmetabolic severely obese women.
        Obes. Surg. 2012; 22: 935-944
        • Song J.
        • Kwon N.
        • Lee M.H.
        • Ko Y.G.
        • Lee J.H.
        • Kim O.Y.
        Association of serum phospholipid PUFAs with cardiometabolic risk: beneficial effect of DHA on the suppression of vascular proliferation/inflammation.
        Clin. Biochem. 2014; 47: 361-368
        • Gregor M.F.
        • Yang L.
        • Fabbrini E.
        • Mohammed B.S.
        • Eagon J.C.
        • Hotamisligil G.S.
        • et al.
        Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss.
        Diabetes. 2009; 58: 693-700
        • Kammoun H.L.
        • Chabanon H.
        • Hainault I.
        • Luquet S.
        • Magnan C.
        • Koike T.
        • et al.
        GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice.
        J. Clin. Investig. 2009; 119: 1201-1215
        • Wang Y.
        • Botolin D.
        • Xu J.
        • Christian B.
        • Mitchell E.
        • Jayaprakasam B.
        • et al.
        Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity.
        J. Lipid Res. 2006; 47: 2028-2041