Advertisement

Weight loss is superior to exercise in improving the atherogenic lipid profile in a sedentary, overweight population with stable coronary artery disease: A randomized trial

      Highlights

      • 70 participants were randomized to either weight loss or aerobic interval training.
      • Atherogenicity was evaluated using lipoprotein density and particle size.
      • Both weight loss and exercise decreased total and low-density lipoprotein.
      • Weight loss elicited a shift toward a less atherogenic lipid profile.
      • Overall, no marked effect was seen on low-grade inflammation.

      Abstract

      Background

      Dyslipidemia and low-grade inflammation are integral in the pathogenesis of atherosclerosis. We aim to compare the effects of a considerable weight loss and intensive exercise training on lipid atherogenicity and low-grade inflammation in a high-risk population with coronary artery disease (CAD).

      Methods

      Seventy non-diabetic participants with CAD, BMI 28–40 kg/m2, age 45–75 years were randomized to 12 weeks' aerobic interval training (AIT) at 85–90% of peak heart rate three times/week or a low energy diet (LED, 800–1000 kcal/day) for 8–10 weeks followed by 2–4 weeks' weight maintenance diet. Lipid profile atherogenicity was described using lipoprotein particle size and density profiling. Low-grade inflammation was evaluated by tumor necrosis factor alpha (TNFα), C-reactive protein, interleukin 6 and soluble urokinase plasminogen activator receptor.

      Results

      Twenty-six (74%) AIT and 29 (83%) LED participants completed intervention per protocol. AIT and LED decreased total (AIT: −518 {−906;−129},P = 0.011, LED: −767 {−1128:−406},P < 0.001) and low-density lipoprotein (LDL, AIT: −186 {−306;−65},P = 0.004, LED: −277 {−433;−122},P < 0.001) assessed as the area under the density profile curve. LED was superior to AIT in decreasing atherogenicity reflected by increased LDL (between-group: 1.0 Å {0.4; 1.7},P = 0.003) and high-density lipoprotein (between-group: 1.2 Å {0.2; 2.4},P = 0.026) particle size and a decreased proportion of total lipoprotein constituted by the small, dense LDL5 subfraction (between-group: −5.0% {−8.4;−1.7},P = 0.004). LED decreased TNFα (9.5% {−15.8;−2.6},P = 0.009). No changes were seen following AIT.

      Conclusion

      LED and AIT decreased total and LDL lipoprotein. LED was superior in decreasing atherogenicity assessed by a shift in density profile and increased particle size. Effect on low-grade inflammation was limited.

      Keywords

      Abbreviations:

      AIT (Aerobic interval training), BMI (Body mass index), CAD (Coronary artery disease), CRP (C-reactive protein), HDL (High density lipoprotein), FFM (Fat free mass), IL6 (Interleukin 6), LDL (Low density lipoprotein), LED (Low energy diet), TNFα (Tumor necrosis factor alpha), SuPAR (Soluble urokinase plasminogen activator receptor), TRL (Triglyceride-rich lipoprotein), VO2peak (Peak aerobic capacity)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Falk E.
        Pathogenesis of atherosclerosis.
        J. Am. Coll. Cardiol. 2006; 47: C7-C12
        • Hansson G.
        • Kriszbacher I.
        • Koppán M.
        • Bódis J.
        Inflammation, atherosclerosis, and coronary artery disease.
        N. Engl. J. Med. 2005; 352: 1685-1695
        • Perk J.
        • De Backer G.
        • Gohlke H.
        • Graham I.
        • Reiner Z.
        • Verschuren M.
        • et al.
        European guidelines on cardiovascular disease prevention in clinical practice (version 2012).
        Eur. J. Prev. Cardiol. 2012; 19: 585-667
        • Ellington A.
        • Kullo I.
        Atherogenic lipoprotein subprofiling.
        Adv. Clin. Chem. 2008; 46: 295-317
        • Otvos J.D.
        • Jeyarajah E.J.
        • Cromwell W.C.
        Measurement issues related to lipoprotein heterogeneity.
        Am. J. Cardiol. 2002; 90: 22-29
        • Pascot A.
        • Lemieux I.
        • Prud’homme D.
        • Tremblay A.
        • Nadeau A.
        • Couillard C.
        • et al.
        Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity.
        J. Lipid Res. 2001; 42: 2007-2014
        • Lamarche B.
        • Moorjani S.
        • Cantin B.
        • Dagenais G.R.
        • Lupien P.J.
        • Despres J.-P.
        Associations of HDL2 and HDL3 subfractions with Ischemic heart disease in men prospective results from the Québec cardiovascular study.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 1098-1105
        • Lamarche B.
        • Moorjani S.
        • Cantin B.
        Small, dense low-density lipoprotein particles as a predictor of the risk of Ischemic heart disease in men prospective results from the Québec cardiovascular.
        Circulation. 1997; 95: 69-75
        • Kaptoge S.
        • Seshasai S.R.K.
        • Gao P.
        • Freitag D.F.
        • Butterworth A.S.
        • Borglykke A.
        • et al.
        Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis.
        Eur. Heart J. 2014; 35: 578-589
        • Ridker P.M.
        • Rifai N.
        • Pfeffer M.
        • Sacks F.
        • Lepage S.
        • Braunwald E.
        Elevation of tumor necrosis factor-α and increased risk of recurrent coronary events after myocardial infarction.
        Circulation. 2000; 101: 2149-2153
        • Sabatine M.S.
        • Morrow D.
        • Jablonski K.
        • Rice M.M.
        • Warnica J.W.
        • Domanski M.J.
        • et al.
        Prognostic significance of the centers for disease control/American Heart Association high-sensitivity C-reactive protein cut points for cardiovascular and other outcomes in patients with stable coronary artery disease.
        Circulation. 2007; 115: 1528-1536
        • Lindmark E.
        • Diderholm E.
        • Wallentin L.
        • Siegbahn A.
        Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy.
        Jama. 2001; 286: 2107-2113
        • Eugen-Olsen J.
        • Andersen O.
        • Linneberg A.
        • Ladelund S.
        • Hansen T.W.
        • Langkilde A.
        • et al.
        Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population.
        J. Intern. Med. 2010; 268: 296-308
        • Lyngbæk S.
        • Marott J.L.
        • Møller D.V.
        • Christiansen M.
        • Iversen K.K.
        • Clemmensen P.M.
        • et al.
        Usefulness of soluble urokinase plasminogen activator receptor to predict repeat myocardial infarction and mortality in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous intervention.
        Am. J. Cardiol. 2012; 110: 1756-1763
        • Fuhrman B.
        The urokinase system in the pathogenesis of atherosclerosis.
        Atherosclerosis. 2012; 222: 8-14
        • Pischon T.
        • Hankinson S.
        • Hotamisligil G.S.
        • Rifai N.
        • Rimm E.B.
        Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers.
        Obes. Res. 2003; 11: 1055-1063
        • Pedersen L.R.
        • Olsen R.H.
        • Jürs A.
        • Astrup A.
        • Chabanova E.
        • Simonsen L.
        • et al.
        A randomised trial comparing weight loss with aerobic exercise in overweight individuals with coronary artery disease: the CUT-IT trial.
        Eur. J. Prev. Cardiol. 2015; 22: 1009-1017
        • Pou K.M.
        • Massaro J.M.
        • Hoffmann U.
        • Vasan R.S.
        • Maurovich-Horvat P.
        • Larson M.G.
        • et al.
        Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study.
        Circulation. 2007; 116: 1234-1241
        • Purnell J.Q.
        • Kahn S.E.
        • Albers J.J.
        • Nevin D.N.
        • Brunzell J.D.
        • Schwartz R.S.
        Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men.
        J. Clin. Endocrinol. Metab. 2000; 85: 977-982
        • Pedersen L.R.
        • Olsen R.H.
        • Frederiksen M.
        • Astrup A.
        • Chabanova E.
        • Hasbak P.
        • et al.
        Copenhagen study of overweight patients with coronary artery disease undergoing low energy diet or interval training: the randomized CUT-IT trial protocol.
        BMC Cardiovasc Disord. 2013; 13: 106
        • Larner C.D.
        • Henriquez R.R.
        • Johnson J.D.
        • Macfarlane R.D.
        Developing high performance lipoprotein density profiling for use in clinical studies relating to cardiovascular disease.
        Anal. Chem. 2011; 83: 8524-8530
        • Johnson J.D.
        • Bell N.J.
        • Donahoe E.L.
        • Macfarlane R.D.
        Metal ion complexes of EDTA as solutes for density gradient ultracentrifugation: influence of metal ions.
        Anal. Chem. 2005; 77: 7054-7061
        • Olsen R.H.
        • Pedersen L.R.
        • Jürs A.
        • Snoer M.
        • Haugaard S.B.
        • Prescott E.
        A randomised trial comparing the effect of exercise training and weight loss on microvascular function in coronary artery disease.
        Int. J. Cardiol. 2015; 185: 229-235
        • Katzel L.I.
        • Coon P.J.
        • Rogus E.
        • Kraus R.M.
        • Goldberg A.P.
        Persistence of low HDL-c levels after weight reduction in older men with small LDL particles.
        Arterioscler. Thromb. Vasc. Biol. 1995; : 299-305
        • Van de Woestijne A.P.
        • Wassink A.M.J.
        • Monajemi H.
        • Liem A.-H.
        • Nathoe H.M.
        • van der Graaf Y.
        • et al.
        Plasma triglyceride levels increase the risk for recurrent vascular events independent of LDL-cholesterol or nonHDL-cholesterol.
        Int. J. Cardiol. 2013; 167: 403-408
        • Arsenault B.J.
        • Rana J.S.
        • Stroes E.S.G.
        • Després J.-P.
        • Shah P.K.
        • Kastelein J.J.P.
        • et al.
        Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healt.
        J. Am. Coll. Cardiol. 2009; 55: 35-41
        • Knopfholz J.
        • Disserol C.C.D.
        • Pierin A.J.
        • Schirr F.L.
        • Streisky L.
        • Takito L.L.
        • et al.
        Validation of the friedewald formula in patients with metabolic syndrome.
        Cholesterol. 2014; 2014: 261878
        • Gazi I.
        • Tsimihodimos V.
        • Filippatos T.D.
        • Saougos V.G.
        • Bairaktari E.T.
        • Tselepis A.D.
        • et al.
        LDL cholesterol estimation in patients with the metabolic syndrome.
        Lipids Health Dis. 2006; 5: 8
        • Varady K.
        • Bhutani S.
        • Klempel M.C.
        • Kroeger C.M.
        Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults.
        Lipids Health Dis. 2011; 10: 119
        • Wood P.
        • Stefanick M.
        • Dreon D.
        • Frey-Hewitt B.
        • Garay S.
        • Williams P.T.
        • et al.
        Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise.
        N. Engl. J. Med. 1988; 319: 1173-1179
        • Durheim M.T.
        • Slentz C.A.
        • Bateman L.A.
        • Mabe S.K.
        • Kraus W.E.
        Relationships between exercise-induced reductions in thigh intermuscular adipose tissue, changes in lipoprotein particle size, and visceral adiposity.
        Am. J. Physiol. Endocrinol. Metab. 2008; 295: 407-412
        • Kraus W.E.
        • Houmard J.
        • Duscha B.D.
        • Knetzger K.J.
        • Wharton M.B.
        • McCartney J.S.
        • et al.
        Effects of the amount and intensity of exercise on plasma lipoproteins.
        N. Engl. J. Med. 2002; 347: 1483-1492
        • Slentz C.A.
        • Duscha B.D.
        • Johnson J.L.
        • Ketchum K.
        • Aiken L.B.
        • Samsa G.P.
        • et al.
        Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE–a randomized controlled study.
        Arch. Intern. Med. 2004; 164: 31-39
        • O'donovan G.
        • McEneny J.
        • Kearney E.M.
        • Owen a
        • Nevill a M.
        • Woolf-May K.
        • et al.
        LDL particle size in habitual exercisers, lean sedentary men and abdominally obese sedentary men.
        Int. J. Sports Med. 2007; 28: 644-649
        • Cromwell W.C.
        • Otvos J.D.
        Low-density lipoprotein particle number and risk for cardiovascular disease.
        Curr. Atheroscler. Rep. 2004; 6: 381-387
        • Conraads V.
        • Beckers P.
        • Bosmans J.
        • De Clerck L.
        • Stevens W.
        • Vrints C.
        • et al.
        Combined endurance/resistance training reduces plasma TNF-α receptor levels in patients with chronic heart failure and coronary artery disease.
        Eur. Heart J. 2002; 23: 1854-1860
        • Milani R.V.
        • Lavie C.J.
        • Mehra M.R.
        Reduction in C-reactive protein through cardiac rehabilitation and exercise training.
        J. Am. Coll. Cardiol. 2004; 43: 1056-1061
        • Goldhammer E.
        • Tanchilevitch A.
        • Maor I.
        • Beniamini Y.
        • Rosenschein U.
        • Sagiv M.
        Exercise training modulates cytokines activity in coronary heart disease patients.
        Int. J. Cardiol. 2005; 100: 93-99
        • Oliveira N.L.
        • Ribeiro F.
        • Silva G.
        • Alves A.J.
        • Silva N.
        • Guimarães J.T.
        • et al.
        Effect of exercise-based cardiac rehabilitation on arterial stiffness and inflammatory and endothelial dysfunction biomarkers: a randomized controlled trial of myocardial infarction patients.
        Atherosclerosis. 2015; 239: 150-157
        • Huffman K.
        • Samsa G.
        • Slentz C.
        • Duscha B.D.
        • Johnson J.
        • Bales C.W.
        • et al.
        Response of high-sensitivity C-reactive protein to exercise training in an at-risk population.
        Am. Heart J. 2006; 152: 793-800
        • Mouridsen M.R.
        • Nielsen O.W.
        • Carlsen C.M.
        • Mattsson N.
        • Ruwald M.H.
        • Binici Z.
        • et al.
        High-sensitivity C-reactive protein and exercise-induced changes in subjects suspected of coronary artery disease.
        J. Inflamm. Res. 2014; 7: 45-55
        • MacIntyre D.L.
        • Sorichter S.
        • Mair J.
        • Berg A.
        • McKenzie D.C.
        Markers of inflammation and myofibrillar proteins following eccentric exercise in humans.
        Eur. J. Appl. Physiol. 2001; 84: 180-186
        • Selvin E.
        • Paynter N.
        • Erlinger T.
        The effect of weight loss on c-reactive protein.
        Arch. Intern. Med. 2007; 167: 31-39
        • Browning L.
        • Krebs J.
        • Jebb S.
        Discrimination ratio analysis of inflammatory markers: implications for the study of inflammation in chronic disease.
        Metabolism. 2004; 53: 899-903
        • Rifai N.
        • Ridker P.M.
        Population distributions of C-reactive protein in apparently healthy men and women in the United States: implication for clinical interpretation.
        Clin. Chem. 2003; 49: 666-669
        • Lyngbæk S.
        • Sehestedt T.
        • Marott J.L.
        • Hansen T.W.
        • Olsen M.H.
        • Andersen O.
        • et al.
        CRP and suPAR are differently related to anthropometry and subclinical organ damage.
        Int. J. Cardiol. 2013; 167: 781-785
        • Sanchis-Gomar F.
        • Bonaguri C.
        • Parejo-Galeano H.
        • Gomez-Cabrera M.
        • Candel J.
        • Vina J.
        • et al.
        Effects of acute exercise and allopurinol administration on soluble urokinase plasminogen activator receptor (suPAR).
        Clin. Lab. 2013; 59: 207-210