Advertisement

High density lipoproteins are modulators of protease activity: Implications in inflammation, complement activation, and atherothrombosis

      Highlights

      • The high density lipoprotein (HDL) proteome is significantly enriched in proteins with protease regulator function.
      • HDL may regulate protease activity in biological process, including inflammation, coagulation, and complement activation.
      • Protease regulator activities may contribute to HDL mediated protection against atherosclerosis.

      Abstract

      High density lipoproteins (HDL) represent a compositionally diverse population of particles in the circulation, containing a wide variety of lipids and proteins. Gene ontology functional analysis of the 96 commonly identified HDL binding proteins reveals that almost half of these proteins are either proteases or have known roles in protease regulation. Here, we discuss the activities of some of these proteins in regard to their roles in regulating proteases involved in inflammation, coagulation, and complement activation, particularly in the context of atherosclerosis. The overall goal of this review is to discuss potential functional roles of HDL in protease regulatory pathways based on current literature and known functions of HDL binding proteins and to promote the consideration of HDL as a global modulator of proteolytic equilibrium.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kannel W.B.
        • Castelli W.P.
        • Gordon T.
        Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study.
        Ann. Intern Med. 1979; 90: 85-91
        • Bartlett J.
        • Predazzi I.M.
        • Williams S.M.
        • Bush W.S.
        • Kim Y.
        • Havas S.
        • Toth P.P.
        • Fazio S.
        • Miller M.
        Is isolated low high-density lipoprotein cholesterol a cardiovascular disease risk Factor? New insights from the framingham offspring study. Circulation.
        Cardiovasc. Qual. outcomes. 2016; 9: 206-212
        • Kosmas C.E.
        • DeJesus E.
        • Rosario D.
        • Vittorio T.J.
        CETP inhibition: past failures and future hopes. Clinical medicine insights.
        Cardiology. 2016; 10: 37-42
        • Voight B.F.
        • Peloso G.M.
        • Orho-Melander M.
        • Frikke-Schmidt R.
        • Barbalic M.
        • Jensen M.K.
        • Hindy G.
        • Hólm H.
        • Ding E.L.
        • Johnson T.
        • Schunkert H.
        • Samani N.J.
        • Clarke R.
        • Hopewell J.C.
        • Thompson J.F.
        • Li M.
        • Thorleifsson G.
        • Newton-Cheh C.
        • Musunuru K.
        • Pirruccello J.P.
        • Saleheen D.
        • Chen L.
        • Stewart A.F.R.
        • Schillert A.
        • Thorsteinsdottir U.
        • Thorgeirsson G.
        • Anand S.
        • Engert J.C.
        • Morgan T.
        • Spertus J.
        • Stoll M.
        • Berger K.
        • Martinelli N.
        • Girelli D.
        • McKeown P.P.
        • Patterson C.C.
        • Epstein S.E.
        • Devaney J.
        • Burnett M.-S.S.
        • Mooser V.
        • Ripatti S.
        • Surakka I.
        • Nieminen M.S.
        • Sinisalo J.
        • Lokki M.-L.L.
        • Perola M.
        • Havulinna A.
        • de Faire U.
        • Gigante B.
        • Ingelsson E.
        • Zeller T.
        • Wild P.
        • de Bakker P.I.
        • Klungel O.H.
        • Maitland-van der Zee A.-H.H.
        • Peters B.J.
        • de Boer A.
        • Grobbee D.E.
        • Kamphuisen P.W.
        • Deneer V.H.
        • Elbers C.C.
        • Onland-Moret N.C.
        • Hofker M.H.
        • Wijmenga C.
        • Verschuren W.M.M.
        • Boer J.M.
        • van der Schouw Y.T.
        • Rasheed A.
        • Frossard P.
        • Demissie S.
        • Willer C.
        • Do R.
        • Ordovas J.M.
        • Abecasis G.R.R.
        • Boehnke M.
        • Mohlke K.L.
        • Daly M.J.
        • Guiducci C.
        • Burtt N.P.P.
        • Surti A.
        • Gonzalez E.
        • Purcell S.
        • Gabriel S.
        • Marrugat J.
        • Peden J.
        • Erdmann J.
        • Diemert P.
        • Willenborg C.
        • König I.R.
        • Fischer M.
        • Hengstenberg C.
        • Ziegler A.
        • Buysschaert I.
        • Lambrechts D.
        • Van de Werf F.
        • Fox K.A.
        • El Mokhtari N.E.
        • Rubin D.
        • Schrezenmeir J.
        • Schreiber S.
        Plasma HDL Cholesterol and Risk of Myocardial Infarction: a Mendelian Randomisation Study. vol. 380. Lancet, London, England2012: 572-580
        • Shah A.S.
        • Tan L.
        • Long J.L.
        • Davidson W.S.
        Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond.
        J. Lipid Res. 2013; 54: 2575-2585
        • Kontush A.
        • Lhomme M.
        • Chapman M.J.
        Unraveling the complexities of the HDL lipidome.
        J. lipid Res. 2013; 54: 2950-2963
        • Santos-Gallego C.G.
        HDL: quality or quantity?.
        Atherosclerosis. 2015; 243: 121-123
        • Khera A.V.
        • Cuchel M.
        • de la Llera-Moya M.
        • Rodrigues A.
        • Burke M.F.
        • Jafri K.
        • French B.C.
        • Phillips J.A.
        • Mucksavage M.L.
        • Wilensky R.L.
        • Mohler E.R.
        • Rothblat G.H.
        • Rader D.J.
        Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
        N. Engl. J. Med. 2011; 364: 127-135
        • Rohatgi A.
        • Khera A.
        • Berry J.D.
        • Givens E.G.
        • Ayers C.R.
        • Wedin K.E.
        • Neeland I.J.
        • Yuhanna I.S.
        • Rader D.R.
        • de Lemos J.A.
        • Shaul P.W.
        HDL cholesterol efflux capacity and incident cardiovascular events.
        N. Engl. J. Med. 2014; 371: 2383-2393
        • Santos-Gallego C.G.
        • Giannarelli C.
        • Badimon J.J.
        Experimental models for the investigation of high-density lipoprotein-mediated cholesterol efflux.
        Curr. Atheroscler. Rep. 2011; 13: 266-276
        • Krauss R.M.
        • Wojnooski K.
        • Orr J.
        • Geaney J.C.
        • Pinto C.A.
        • Liu Y.
        • Wagner J.A.
        • Luk J.M.
        • Johnson-Levonas A.O.
        • Anderson M.S.
        • Dansky H.M.
        Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib.
        J. lipid Res. 2012; 53: 540-547
        • Canner P.L.
        • Berge K.G.
        • Wenger N.K.
        • Stamler J.
        • Friedman L.
        • Prineas R.J.
        • Friedewald W.
        Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin.
        J. Am. Coll. Cardiol. 1986; 8: 1245-1255
        • Boden W.E.
        • Probstfield J.L.
        • Anderson T.
        • Chaitman B.R.
        • Desvignes-Nickens P.
        • Koprowicz K.
        • McBride R.
        • Teo K.
        • Weintraub W.
        Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N. Engl. J. Med. 2011; 365: 2255-2267
        • Group H.T.
        • Landray M.J.
        • Haynes R.
        • Hopewell J.C.
        • Parish S.
        • Aung T.
        • Tomson J.
        • Wallendszus K.
        • Craig M.
        • Jiang L.
        • Collins R.
        • Armitage J.
        Effects of extended-release niacin with laropiprant in high-risk patients.
        N. Engl. J. Med. 2014; 371: 203-212
        • Green P.S.
        • Vaisar T.
        • Pennathur S.
        • Kulstad J.J.
        • Moore A.B.
        • Marcovina S.
        • Brunzell J.
        • Knopp R.H.
        • Zhao X.Q.
        • Heinecke J.W.
        Combined statin and niacin therapy remodels the high-density lipoprotein proteome.
        Circulation. 2008; 118: 1259-1267
        • Rosenson R.S.
        • Brewer H.B.
        • Ansell B.J.
        • Barter P.
        • Chapman M.J.
        • Heinecke J.W.
        • Kontush A.
        • Tall A.R.
        • Webb N.R.
        Dysfunctional HDL and atherosclerotic cardiovascular disease.
        Nat. Rev. Cardiol. 2016; 13: 48-60
        • Kim M.-H.H.
        • de Beer M.C.
        • Wroblewski J.M.
        • Charnigo R.J.
        • Ji A.
        • Webb N.R.
        • de Beer F.C.
        • van der Westhuyzen D.R.
        Impact of individual acute phase serum amyloid A isoforms on HDL metabolism in mice.
        J. lipid Res. 2016; 57: 969-979
        • Han C.Y.
        • Tang C.
        • Guevara M.E.
        • Wei H.
        • Wietecha T.
        • Shao B.
        • Subramanian S.
        • Omer M.
        • Wang S.
        • O'Brien K.D.
        • Marcovina S.M.
        • Wight T.N.
        • Vaisar T.
        • de Beer M.C.
        • de Beer F.C.
        • Osborne W.R.
        • Elkon K.B.
        • Chait A.
        Serum amyloid A impairs the antiinflammatory properties of HDL.
        J. Clin. investigation. 2016; 126: 266-281
        • Vaisar T.
        • Tang C.
        • Babenko I.
        • Hutchins P.
        • Wimberger J.
        • Suffredini A.F.
        • Heinecke J.W.
        Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity.
        J. lipid Res. 2015; 56: 1519-1530
        • Davidson W.S.
        The HDL Proteome.
        2015
        • Cuchel M.
        • Rader D.J.
        Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?.
        Circulation. 2006; 113: 2548-2555
        • Gordon S.M.
        • Hofmann S.
        • Askew D.S.
        • Davidson W.S.
        High density lipoprotein: it's not just about lipid transport anymore.
        Trends Endocrinol. Metab. 2011; 22: 9-15
        • Vaisar T.
        • Pennathur S.
        • Green P.S.
        • Gharib S.A.
        • Hoofnagle A.N.
        • Cheung M.C.
        • Byun J.
        • Vuletic S.
        • Kassim S.
        • Singh P.
        • Chea H.
        • Knopp R.H.
        • Brunzell J.
        • Geary R.
        • Chait A.
        • Zhao X.Q.
        • Elkon K.
        • Marcovina S.
        • Ridker P.
        • Oram J.F.
        • Heinecke J.W.
        Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
        J. Clin. Invest. 2007; 117: 746-756
        • Mi H.
        • Poudel S.
        • Muruganujan A.
        • Casagrande J.T.
        • Thomas P.D.
        PANTHER version 10: expanded protein families and functions, and analysis tools.
        Nucleic acids Res. 2016; : 44
        • Nanjappa V.
        • Thomas J.K.
        • Marimuthu A.
        • Muthusamy B.
        • Radhakrishnan A.
        • Sharma R.
        • Ahmad Khan A.
        • Balakrishnan L.
        • Sahasrabuddhe N.A.
        • Kumar S.
        • Jhaveri B.N.
        • Sheth K.V.
        • Kumar Khatana R.
        • Shaw P.G.
        • Srikanth S.M.
        • Mathur P.P.
        • Shankar S.
        • Nagaraja D.
        • Christopher R.
        • Mathivanan S.
        • Raju R.
        • Sirdeshmukh R.
        • Chatterjee A.
        • Simpson R.J.
        • Harsha H.C.
        • Pandey A.
        • Prasad T.S.
        Plasma Proteome Database as a resource for proteomics research: 2014 update.
        Nucleic acids Res. 2014; 42: 65
        • Law R.H.
        • Zhang Q.
        • McGowan S.
        • Buckle A.M.
        • Silverman G.A.
        • Wong W.
        • Rosado C.J.
        • Langendorf C.G.
        • Pike R.N.
        • Bird P.I.
        • Whisstock J.C.
        An overview of the serpin superfamily.
        Genome Biol. 2006; 7: 216
        • Libby P.
        • Ridker P.M.
        • Hansson G.K.K.
        Progress and challenges in translating the biology of atherosclerosis.
        Nature. 2011; 473: 317-325
        • Steinberg D.
        • Witztum J.L.
        Oxidized low-density lipoprotein and atherosclerosis.
        Arteriosclerosis, thrombosis, Vasc. Biol. 2010; 30: 2311-2316
        • Simon D.I.
        • Jain M.K.
        Targeting proteases in atherosclerosis: hitting the nail with the hammer.
        Circulation. 2011; 124: 2480-2482
        • Bot I.
        • von der Thusen J.H.
        • Donners M.M.
        • Lucas A.
        • Fekkes M.L.
        • de Jager S.C.
        • Kuiper J.
        • Daemen M.J.
        • van Berkel T.J.
        • Heeneman S.
        • Biessen E.A.
        Serine protease inhibitor Serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in ApoE-/-mice.
        Circ. Res. 2003; 93: 464-471
        • Dollery C.M.
        • Owen C.A.
        • Sukhova G.K.
        • Krettek A.
        • Shapiro S.D.
        • Libby P.
        Neutrophil elastase in human atherosclerotic plaques: production by macrophages.
        Circulation. 2003; 107: 2829-2836
        • Van der Donckt C.
        • Van Herck J.L.
        • Schrijvers D.M.
        • Vanhoutte G.
        • Verhoye M.
        • Blockx I.
        • Van Der Linden A.
        • Bauters D.
        • Lijnen H.R.
        • Sluimer J.C.
        • Roth L.
        • Van Hove C.E.
        • Fransen P.
        • Knaapen M.W.
        • Hervent A.-S.S.
        • De Keulenaer G.W.
        • Bult H.
        • Martinet W.
        • Herman A.G.
        • De Meyer G.R.
        Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death.
        Eur. heart J. 2015; 36: 1049-1058
        • Rabinovich R.A.
        • Miller B.E.
        • Wrobel K.
        • Ranjit K.
        • Williams M.C.
        • Drost E.
        • Edwards L.D.
        • Lomas D.A.
        • Rennard S.I.
        • Agustí A.
        • Tal-Singer R.
        • Vestbo J.
        • Wouters E.F.
        • John M.
        • van Beek E.J.
        • Murchison J.T.
        • Bolton C.E.
        • MacNee W.
        • Huang J.T.
        • behalf of of to Investigators, o
        Circulating desmosine levels do not predict emphysema progression but are associated with cardiovascular risk and mortality in COPD.
        Eur. Respir. J. 2016; 47: 1365-1373
        • Gayral S.
        • Garnotel R.
        • Castaing-Berthou A.
        • Blaise S.
        • Fougerat A.
        • Berge E.
        • Montheil A.
        • Malet N.
        • Wymann M.P.
        • Maurice P.
        • Debelle L.
        • Martiny L.
        • Martinez L.O.
        • Pshezhetsky A.V.
        • Duca L.
        • Laffargue M.
        Elastin-derived peptides potentiate atherosclerosis through the immune Neu1-PI3Kγ pathway.
        Cardiovasc. Res. 2014; 102: 118-127
        • Rouis M.
        • Nigon F.
        • Lafuma C.
        • Hornebeck W.
        • Chapman M.J.
        Expression of elastase activity by human monocyte-macrophages is modulated by cellular cholesterol content, inflammatory mediators, and phorbol myristate acetate.
        Arteriosclerosis. 1990; 10: 246-255
        • Asokananthan N.
        • Graham P.T.
        • Fink J.
        Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells.
        J. Immunol. 2002; 168: 3577-3585
        • Alfaidi M.
        • Wilson H.
        • Daigneault M.
        • Burnett A.
        • Ridger V.
        • Chamberlain J.
        • Francis S.
        Neutrophil elastase promotes interleukin-1β secretion from human coronary endothelium.
        J. Biol. Chem. 2015; 290: 24067-24078
        • Chin A.C.
        • Lee W.Y.
        • Nusrat A.
        • Vergnolle N.
        • Parkos C.A.
        Neutrophil-mediated activation of epithelial protease-activated Receptors-1 and -2 regulates barrier function and transepithelial migration.
        J. Immunol. 2008; 181: 5702-5710
        • Lockett A.D.
        • Brown M.
        • Santos-Falcon N.
        • Rush N.I.
        • Oueini H.
        • Oberle A.J.
        • Bolanis E.
        • Fragoso M.A.
        • Petrusca D.N.
        • Serban K.A.
        • Schweitzer K.S.
        • Presson Jr., R.G.
        • Campos M.
        • Petrache I.
        Active trafficking of alpha 1 antitrypsin across the lung endothelium.
        PLoS One. 2014; : 9
        • Tuma P.L.
        • Hubrd A.L.
        Transcytosis: crossing cellular barriers.
        Physiol. Rev. 2003; 83: 871-932
        • Rohrer L.
        • Cavelier C.
        • Fuchs S.
        • Schluter M.A.
        • Volker W.
        • von Eckardstein A.
        Binding, internalization and transport of apolipoprotein A-I by vascular endothelial cells.
        Biochim. Biophys. Acta. 2006; 1761: 186-194
        • Rohrer L.
        • Ohnsorg P.M.
        • Lehner M.
        • Landolt F.
        • Rinninger F.
        • von Eckardstein A.
        High-density lipoprotein transport through aortic endothelial cells involves scavenger receptor BI and ATP-binding cassette transporter G1.
        Circ. Res. 2009; 104: 1142-1150
        • Ortiz-Munoz G.
        • Houard X.
        • Martin-Ventura J.L.
        • Ishida B.Y.
        • Loyau S.
        • Rossignol P.
        • Moreno J.A.
        • Kane J.P.
        • Chalkley R.J.
        • Burlingame A.L.
        • Michel J.B.
        • Meilhac O.
        HDL antielastase activity prevents smooth muscle cell anoikis, a potential new antiatherogenic property.
        FASEB J. 2009; 23: 3129-3139
        • Gordon S.M.
        • McKenzie B.
        • Kemeh G.
        • Sampson M.
        • Perl S.
        • Young N.S.
        • Fessler M.B.
        • Remaley A.T.
        Rosuvastatin alters the proteome of high density lipoproteins: generation of alpha-1-antitrypsin enriched particles with anti-inflammatory properties.
        Mol. Cell Proteomics. 2015; 14: 3247-3257
        • Wang D.
        • Wang W.
        • Dawkins P.
        • Paterson T.
        • Kalsheker N.
        • Sallenave J.-M.M.
        • Houghton A.M.
        Deletion of Serpina1a, a murine α1-antitrypsin ortholog, results in embryonic lethality.
        Exp. lung Res. 2011; 37: 291-300
        • Frazier G.C.
        • Siewertsen M.A.
        • Hofker M.H.
        • Brubacher M.G.
        • Cox D.W.
        A null deficiency allele of alpha 1-antitrypsin, QOludwigshafen, with altered tertiary structure.
        J. Clin. investigation. 1990; 86: 1878-1884
        • Duckers J.M.
        • Shale D.J.
        • Stockley R.A.
        • Gale N.S.
        • Evans B.A.
        • Cockcroft J.R.
        • Bolton C.E.
        Cardiovascular and musculskeletal co-morbidities in patients with alpha 1 antitrypsin deficiency.
        Respir. Res. 2010; 11: 173
        • Gilutz H.
        • Siegel Y.
        • Paran E.
        • Cristal N.
        • Quastel M.R.
        Alpha 1-antitrypsin in acute myocardial infarction.
        Br. Heart J. 1983; 49: 26-29
        • Nordon I.M.
        • Hinchliffe R.J.
        • Loftus I.M.
        • Thompson M.M.
        Pathophysiology and epidemiology of abdominal aortic aneurysms.
        Nat. Rev. Cardiol. 2011; 8: 92-102
        • Azuma J.
        • Maegdefessel L.
        • Kitagawa T.
        • Dalman R.L.
        • McConnell M.V.
        • Tsao P.S.
        Assessment of elastase-induced murine abdominal aortic aneurysms: comparison of ultrasound imaging with in situ video microscopy.
        J. Biomed. Biotechnol. 2011; 2011: 252141
        • Delbosc S.
        • Diallo D.
        • Dejouvencel T.
        • Lamiral Z.
        • Louedec L.
        • Martin-Ventura J.-L.L.
        • Rossignol P.
        • Leseche G.
        • Michel J.-B.B.
        • Meilhac O.
        Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm.
        Cardiovasc. Res. 2013; 100: 307-315
        • Singh K.
        • Bønaa K.H.
        • Jacobsen B.K.
        Prevalence of and risk factors for abdominal aortic aneurysms in a population-based study: The Tromsø Study.
        Am. J. Epidemiol. 2001; 154: 236-244
        • Burillo E.
        • Lindholt J.S.
        • Molina-Sanchez P.
        • Jorge I.
        • Martinez-Pinna R.
        • Blanco-Colio L.M.
        • Tarin C.
        • Torres-Fonseca M.M.
        • Esteban M.
        • Laustsen J.
        • Ramos-Mozo P.
        • Calvo E.
        • Lopez J.A.
        • Vega de Ceniga M.
        • Michel J.B.
        • Egido J.
        • Andres V.
        • Vazquez J.
        • Meilhac O.
        • Martin-Ventura J.L.
        ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression.
        Thromb. Haemost. 2015; : 113
        • Torsney E.
        • Pirianov G.
        • Charolidi N.
        Elevation of plasma high-density lipoproteins inhibits development of experimental abdominal aortic aneurysms.
        Arterioscler Thromb. Vasc. Biol. 2012; 32: 2678-2686
        • Krishna S.M.
        • Seto S.W.
        • Moxon J.V.
        • Rush C.
        Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model.
        Am. J. Pathol. 2012; 181: 706-718
        • Moreno J.A.
        • Ortega-Gomez A.
        • Rubio-Navarro A.
        • Louedec L.
        • Ho-Tin-Noe B.
        • Caligiuri G.
        • Nicoletti A.
        • Levoye A.
        • Plantier L.
        • Meilhac O.
        High-density lipoproteins potentiate alpha1-antitrypsin therapy in elastase-induced pulmonary emphysema.
        Am. J. Respir. Cell Mol. Biol. 2014; 51: 536-549
        • Chapman K.R.
        • Stockley R.A.
        • Dawkins C.
        • Wilkes M.M.
        • Navickis R.J.
        Augmentation therapy for alpha1 antitrypsin deficiency: a meta-analysis.
        COPD. 2009; 6: 177-184
        • Griffin J.H.
        • Fernández J.A.
        • Deguchi H.
        Plasma lipoproteins, hemostasis and thrombosis.
        Thrombosis haemostasis. 2001; 86: 386-394
        • Viles-Gonzalez J.F.
        • Fuster V.
        • Badimon J.J.
        Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences.
        Eur. heart J. 2004; 25: 1197-1207
        • Rauch U.
        • Osende J.I.
        • Fuster V.
        • Badimon J.J.
        • Fayad Z.
        • Chesebro J.H.
        Thrombus formation on atherosclerotic plaques: pathogenesis and clinical consequences.
        Ann. Intern. Med. 2001; 134: 224-238
        • Mineo C.
        • Deguchi H.
        • Griffin J.H.
        • Shaul P.W.
        Endothelial and antithrombotic actions of HDL.
        Circulation Res. 2006; 98: 1352-1364
        • Deguchi H.
        • Pecheniuk N.M.
        • Elias D.J.
        • Averell P.M.
        • Griffin J.H.
        High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men.
        Circulation. 2005; 112: 893-899
        • Holy E.W.
        • Besler C.
        • Reiner M.F.
        • Camici G.G.
        • Manz J.
        • Beer J.H.
        • Luscher T.F.
        • Landmesser U.
        • Tanner F.C.
        High-density lipoprotein from patients with coronary heart disease loses anti-thrombotic effects on endothelial cells: impact on arterial thrombus formation.
        Thromb. Haemost. 2014; 112: 1024-1035
        • Kontush A.
        • Therond P.
        • Zerrad A.
        • Couturier M.
        • Négre-Salvayre A.
        • de Souza J.A.
        • Chantepie S.
        • Chapman M.J.
        Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities.
        Arteriosclerosis, thrombosis, Vasc. Biol. 2007; 27: 1843-1849
        • Santos-Gallego C.G.
        • Vahl T.P.
        • Goliasch G.
        • Picatoste B.
        • Arias T.
        • Ishikawa K.
        • Njerve I.U.
        • Sanz J.
        • Narula J.
        • Sengupta P.P.
        • Hajjar R.J.
        • Fuster V.
        • Badimon J.J.
        Sphingosine-1-Phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a Porcine model of ischemia/reperfusion.
        Circulation. 2016; 133: 954-966
        • Moyer M.P.
        • Tracy R.P.
        • Tracy P.B.
        • van't Veer C.
        • Sparks C.E.
        • Mann K.G.
        Plasma lipoproteins support prothrombinase and other procoagulant enzymatic complexes.
        Arteriosclerosis, thrombosis, Vasc. Biol. 1998; 18: 458-465
        • Carson S.D.
        Plasma high density lipoproteins inhibit the activation of coagulation factor X by factor VIIa and tissue factor.
        FEBS Lett. 1981; 132: 37-40
        • Broze G.J.
        • Warren L.A.
        • Novotny W.F.
        • Higuchi D.A.
        • Girard J.J.
        • Miletich J.P.
        The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action.
        Blood. 1988; 71: 335-343
        • Rezaee F.
        • Casetta B.
        • Levels J.H.
        • Speijer D.
        • Meijers J.C.
        Proteomic analysis of high-density lipoprotein.
        Proteomics. 2006; 6: 721-730
        • Winter J.H.
        • Bennett B.
        • McTaggart F.
        • Douglas A.S.
        Lipoprotein fractions and antithrombin III consumption during clotting.
        Thrombosis haemostasis. 1982; 47: 236-238
        • Nimpf J.
        • Bevers E.M.
        • Bomans P.H.
        • Till U.
        • Wurm H.
        • Kostner G.M.
        • Zwaal R.F.
        Prothrombinase activity of human platelets is inhibited by beta 2-glycoprotein-I.
        Biochimica biophysica acta. 1986; 884: 142-149
        • Schousboe I.
        Beta 2-Glycoprotein I: a plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway.
        Blood. 1985; 66: 1086-1091
        • Mori T.
        • Takeya H.
        • Nishioka J.
        • Gabazza E.C.
        • Suzuki K.
        Beta 2-Glycoprotein I modulates the anticoagulant activity of activated protein C on the phospholipid surface.
        Thrombosis haemostasis. 1996; 75: 49-55
        • Izumi T.
        • Pound M.L.
        • Su Z.
        • Iverson G.M.
        • Ortel T.L.
        Anti-beta(2)-glycoprotein I antibody-mediated inhibition of activated protein C requires binding of beta(2)-glycoprotein I to phospholipids.
        Thrombosis haemostasis. 2002; 88: 620-626
        • Oslakovic C.
        • Krisinger M.J.
        • Andersson A.
        • Jauhiainen M.
        • Ehnholm C.
        • Dahlbäck B.
        Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins.
        J. Biol. Chem. 2009; 284: 5896-5904
        • Deguchi H.
        • Wolfbauer G.
        • Cheung M.C.
        • Banerjee Y.
        • Elias D.J.
        • Fernández J.A.A.
        • Albers J.J.
        • Griffin J.H.
        Inhibition of thrombin generation in human plasma by phospholipid transfer protein.
        Thrombosis J. 2015; 13: 24
        • Griffin J.H.
        • Evatt B.
        • Zimmerman T.S.
        • Kleiss A.J.
        • Wideman C.
        Deficiency of protein C in congenital thrombotic disease.
        J. Clin. investigation. 1981; 68: 1370-1373
        • Griffin J.H.
        • Kojima K.
        • Banka C.L.
        • Curtiss L.K.
        • Fernández J.A.
        High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C.
        J. Clin. investigation. 1999; 103: 219-227
        • Fernandez J.A.
        • Deguchi H.
        • Banka C.L.
        • Witztum J.L.
        • Griffin J.H.
        Re-evaluation of the anticoagulant properties of high-density lipoprotein-brief report.
        Arteriosclerosis, thrombosis, Vasc. Biol. 2015; 35: 570-572
        • Theilmeier G.
        • Michiels C.
        • Spaepen E.
        • Vreys I.
        • Collen D.
        • Vermylen J.
        • Hoylaerts M.F.
        Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia.
        Blood. 2002; 99: 4486-4493
        • Paleolog E.M.
        • Crossman D.C.
        • McVey J.H.
        • Pearson J.D.
        Differential regulation by cytokines of constitutive and stimulated secretion of von Willebrand factor from endothelial cells.
        Blood. 1990; 75: 688-695
        • Levine J.D.
        • Harlan J.M.
        • Harker L.A.
        • Joseph M.L.
        • Counts R.B.
        Thrombin-mediated release of factor VIII antigen from human umbilical vein endothelial cells in culture.
        Blood. 1982; 60: 531-534
        • Chignard M.
        • Balloy V.
        • Renesto P.
        Leucocyte elastase-mediated release of von Willebrand factor from cultured endothelial cells.
        Eur. Respir. J. 1993; 6: 791-796
        • Chung D.W.
        • Chen J.
        • Ling M.
        • Fu X.
        • Blevins T.
        • Parsons S.
        • Le J.
        • Harris J.
        • Martin T.R.
        • Konkle B.A.
        • Zheng Y.
        • López J.A.A.
        High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion.
        Blood. 2016; 127: 637-645
        • Morange P.E.
        • Simon C.
        • Alessi M.C.
        • Luc G.
        • Arveiler D.
        • Ferrieres J.
        • Amouyel P.
        • Evans A.
        • Ducimetiere P.
        • Juhan-Vague I.
        • Group P.
        Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study.
        Circulation. 2004; 109: 1343-1348
        • Whincup P.H.
        • Danesh J.
        • Walker M.
        • Lennon L.
        • Thomson A.
        • Appleby P.
        • Rumley A.
        • Lowe G.D.
        Von Willebrand factor and coronary heart disease: prospective study and meta-analysis.
        Eur. heart J. 2002; 23: 1764-1770
        • Danesh J.
        • Wheeler J.G.
        • Hirschfield G.M.
        • Eda S.
        • Eiriksdottir G.
        • Rumley A.
        • Lowe G.D.
        • Pepys M.B.
        • Gudnason V.
        C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.
        N. Engl. J. Med. 2004; 350: 1387-1397
        • Vischer U.M.
        Von Willebrand factor, endothelial dysfunction, and cardiovascular disease. Journal of thrombosis and haemostasis.
        JTH. 2006; 4: 1186-1193
        • Undas A.
        • Ariëns R.A.
        Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases.
        Arteriosclerosis, thrombosis, Vasc. Biol. 2011; 31: 99
        • Ząbczyk M.
        • Hońdo Ł.
        • Krzek M.
        • Undas A.
        High-density cholesterol and apolipoprotein AI as modifiers of plasma fibrin clot properties in apparently healthy individuals.
        Blood coagulation fibrinolysis Int. J. haemostasis thrombosis. 2013; 24: 50-54
        • Sarma J.V.
        • Ward P.A.
        The complement system.
        Cell tissue Res. 2011; 343: 227-235
        • Muscari A.
        • Massarelli G.
        • Bastagli L.
        • Poggiopollini G.
        • Tomassetti V.
        • Drago G.
        • Martignani C.
        • Pacilli P.
        • Boni P.
        • Puddu P.
        Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men.
        Eur. heart J. 2000; 21: 1081-1090
        • Onat A.
        • Uzunlar B.
        • Hergenç G.
        • Yazici M.
        • Sari I.
        • Uyarel H.
        • Can G.
        • Sansoy V.
        Cross-sectional study of complement C3 as a coronary risk factor among men and women.
        Clin. Sci. Lond. Engl. 1979). 2005; 108: 129-135
        • Speidl W.S.
        • Exner M.
        • Amighi J.
        • Kastl S.P.
        • Zorn G.
        • Maurer G.
        • Wagner O.
        • Huber K.
        • Minar E.
        • Wojta J.
        • Schillinger M.
        Complement component C5a predicts future cardiovascular events in patients with advanced atherosclerosis.
        Eur. heart J. 2005; 26: 2294-2299
        • Hollander W.
        • Colombo M.A.
        • Kirkpatrick B.
        • Paddock J.
        Soluble proteins in the human atherosclerotic plaque. With spectral reference to immunoglobulins, C3-complement component, alpha 1-antitrypsin and alpha 2-macroglobulin.
        Atherosclerosis. 1979; 34: 391-405
        • Vlaicu R.
        • Niculescu F.
        • Rus H.G.
        • Cristea A.
        Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque.
        Atherosclerosis. 1985; 57: 163-177
        • Speidl W.S.
        • Kastl S.P.
        • Hutter R.
        • Katsaros K.M.
        • Kaun C.
        • Bauriedel G.
        • Maurer G.
        • Huber K.
        • Badimon J.J.
        • Wojta J.
        The complement component C5a is present in human coronary lesions in vivo and induces the expression of MMP-1 and MMP-9 in human macrophages in vitro.
        FASEB J. official Publ. Fed. Am. Soc. Exp. Biol. 2011; 25: 35-44
        • Benzaquen L.R.
        • Nicholson-Weller A.
        • Halperin J.A.
        Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells.
        J. Exp. Med. 1994; 179: 985-992
        • Christiansen V.J.
        • Sims P.J.
        • Hamilton K.K.
        Complement C5b-9 increases plasminogen binding and activation on human endothelial cells.
        Arteriosclerosis, thrombosis, Vasc. Biol. 1997; 17: 164-171
        • Speidl W.S.
        • Kastl S.P.
        • Huber K.
        • Wojta J.
        Complement in atherosclerosis: friend or foe?.
        J. thrombosis haemostasis JTH. 2011; 9: 428-440
        • James R.W.
        • Hochstrasser A.C.
        • Borghini I.
        • Martin B.
        • Pometta D.
        • Hochstrasser D.
        Characterization of a human high density lipoprotein-associated protein, NA1/NA2. Identity with SP-40,40, an inhibitor of complement-mediated cytolysis.
        Arteriosclerosis thrombosis a J. Vasc. Biol./Am. Heart Assoc. 1991; 11: 645-652
        • Jenne D.E.
        • Lowin B.
        • Peitsch M.C.
        • Böttcher A.
        • Schmitz G.
        • Tschopp J.
        Clusterin (complement lysis inhibitor) forms a high density lipoprotein complex with apolipoprotein A-I in human plasma.
        J. Biol. Chem. 1991; 266: 11030-11036
        • Haapasalo K.
        • van Kessel K.
        • Nissilä E.
        • Metso J.
        • Johansson T.
        • Miettinen S.
        • Varjosalo M.
        • Kirveskari J.
        • Kuusela P.
        • Chroni A.
        • Jauhiainen M.
        • van Strijp J.
        • Jokiranta T.S.
        Complement Factor H Binds to Human Serum Apolipoprotein E and Mediates Complement Regulation on High Density Lipoprotein Particles.
        J. Biol. Chem. 2015; 290: 28977-28987
        • Hamilton K.K.
        • Sims P.J.
        The terminal complement proteins C5b-9 augment binding of high density lipoprotein and its apolipoproteins A-I and A-II to human endothelial cells.
        J. Clin. investigation. 1991; 88: 1833-1840
        • Hamilton K.K.
        • Zhao J.
        • Sims P.J.
        Interaction between apolipoproteins A-I and A-II and the membrane attack complex of complement. Affinity of the apoproteins for polymeric C9.
        J. Biol. Chem. 1993; 268: 3632-3638
        • Sampietro T.
        • Bigazziv F.
        • Dal Pino B.
        • Rossi G.
        • Chella E.
        • Lusso S.
        • Puntoni M.
        • Tuoni M.
        • Bionda A.
        Up regulation of C3, C4, and soluble intercellular adhesion molecule-1 co-expresses with high sensitivity C reactive protein in familial hypoalphalipoproteinaemia: further evidence of inflammatory activation.
        Heart (British Card. Soc. 2004; 90: 1438-1442
        • Serfaty-Lacrosniere C.
        • Civeira F.
        • Lanzberg A.
        • Isaia P.
        • Berg J.
        • Janus E.D.
        • Smith M.P.
        • Pritchard P.H.
        • Frohlich J.
        • Lees R.S.
        Homozygous Tangier disease and cardiovascular disease.
        Atherosclerosis. 1994; 107: 85-98
        • Choi-Miura N.H.
        • Sakamoto T.
        • Ohtaki S.
        • Nakamura H.
        • Ishizawa S.
        • Takagi Y.
        • Gomi K.
        • Tomita M.
        Elevated complement activities of sera from patients with high density lipoprotein deficiency (Tangier disease): the presence of normal level of clusterin and the possible implication in the atherosclerosis.
        Clin. Exp. Immunol. 1993; 93: 242-247
        • Samstad E.O.
        • Niyonzima N.
        • Nymo S.
        • Aune M.H.
        • Ryan L.
        • Bakke S.S.
        • Lappegård K.T.
        • Brekke O.-L.L.
        • Lambris J.D.
        • Damås J.K.
        • Latz E.
        • Mollnes T.E.
        • Espevik T.
        Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release.
        J. Immunol. Baltim. Md. 1950). 2014; 192: 2837-2845
        • Thacker S.G.
        • Zarzour A.
        • Chen Y.
        • Alcicek M.S.
        • Freeman L.
        • Sviridov D.O.
        • Demosky S.
        • Remaley A.T.
        High Density Lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation.
        Immunology. 2016; 149: 306-319
        • Niyonzima N.
        • Samstad E.O.
        • Aune M.H.
        • Ryan L.
        • Bakke S.S.
        • Rokstad A.M.
        • Wright S.D.
        • Damås J.K.
        • Mollnes T.E.
        • Latz E.
        • Espevik T.
        Reconstituted High-Density Lipoprotein Attenuates Cholesterol Crystal-Induced Inflammatory Responses by Reducing Complement Activation.
        J. Immunol. Baltim. Md. 1950). 2015; 195: 257-264
        • IDF
        Complement Deficiencies.
        2013
        • D J.
        Coagulation Full.
        2007