Advertisement

High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression

      Highlights

      • S1P inhibits mitochondrial and endoplasmic reticulum-dependent apoptosis in macrophages.
      • Inhibitory effects of S1P on apoptosis depend on the increased expression of survivin.
      • Survivin upregulation by S1P is mediated through activation of JAK2 and STAT3.
      • High density lipoprotein emulates anti-apoptotic effect of S1P in macrophages.

      Abstract

      Background and aims

      Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages.

      Methods

      Mitochondrial or endoplasmic reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively.

      Results

      Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression of the inhibitor of apoptosis protein (IAP) family proteins cIAP1, cIAP2 and survivin, but only the inhibitor of survivin expression YM155 and not the cIAP1/2 blocker GDC0152 reversed the inhibitory effect of S1P on apoptosis. Moreover, S1P activated signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL lipids, and apolipoprotein (apo) M-containing HDL, but not by apoA-I or HDL deprived of S1P or apoM. In addition, JTE013 and CAY10444, S1P receptor 2 and 3 antagonists, respectively, compromised the S1P and HDL capacities to stimulate STAT3 activation and survivin expression, and to inhibit apoptosis.

      Conclusions

      HDL-associated S1P inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. The suppression of macrophage apoptosis may represent a novel mechanism utilized by HDL to exert its anti-atherogenic effects.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moore K.J.
        • Tabas I.
        Macrophages in the pathogenesis of atherosclerosis.
        Cell. 2011; 145: 341-355
        • Moore K.J.
        • Sheedy F.J.
        • Fisher E.A.
        Macrophages in atherosclerosis: a dynamic balance.
        Nat. Rev. Immunol. 2013; 13: 709-721
        • Seimon T.
        • Tabas I.
        Mechanisms and consequences of macrophage apoptosis in atherosclerosis.
        J. Lipid Res. 2009; 50Suppl: S382-S387
        • Zheng Y.
        • Gardner S.E.
        • Clarke M.C.
        Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 2781-2786
        • Andrés V.
        • Pello O.M.
        • Silvestre-Roig C.
        Macrophage proliferation and apoptosis in atherosclerosis.
        Curr. Opin. Lipidol. 2012; 23: 429-438
        • Liu J.
        • Thewke D.P.
        • Su Y.R.
        • Linton M.F.
        • Fazio S.
        • Sinensky M.S.
        Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 174-179
        • Babaev V.R.
        • Chew J.D.
        • Ding L.
        • Davis S.
        • Breyer M.D.
        • Breyer R.M.
        • Oates J.A.
        • Fazio S.
        • Linton M.F.
        Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis.
        Cell Metab. 2008; 8: 492-501
        • Gautier E.L.
        • Huby T.
        • Witztum J.L.
        • Ouzilleau B.
        • Miller E.R.
        • Saint-Charles F.
        • Aucouturier P.
        • Chapman M.J.
        • Lesnik P.
        Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage.
        Circulation. 2009; 119: 1795-1804
        • Yamada S.
        • Ding Y.
        • Tanimoto A.
        • Wang K.Y.
        • Guo X.
        • Li Z.
        • Tasaki T.
        • Nabesima A.
        • Murata Y.
        • Shimajiri S.
        • Kohno K.
        • Ichijo H.
        • Sasaguri Y.
        Apoptosis signal-regulating kinase 1 deficiency accelerates hyperlipidemia-induced atheromatous plaques via suppression of macrophage apoptosis.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 1555-1564
        • Scull C.M.
        • Tabas I.
        Mechanisms of ER stress-induced apoptosis in atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 2792-2797
        • Thorp E.
        • Li G.
        • Seimon T.A.
        • Kuriakose G.
        • Ron D.
        • Tabas I.
        Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP.
        Cell Metab. 2009; 9: 474-481
        • Tsukano H.
        • Gotoh T.
        • Endo M.
        • Miyata K.
        • Tazume H.
        • Kadomatsu T.
        • Yano M.
        • Iwawaki T.
        • Kohno K.
        • Araki K.
        • Mizuta H.
        • Oike Y.
        The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1925-1932
        • Hossain G.S.
        • Lynn E.G.
        • Maclean K.N.
        • Zhou J.
        • Dickhout J.G.
        • Lhoták S.
        • Trigatti B.
        • Capone J.
        • Rho J.
        • Tang D.
        • McCulloch C.A.
        • Al-Bondokji I.
        • Malloy M.J.
        • Pullinger C.R.
        • Kane J.P.
        • Li Y.
        • Shiffman D.
        • Austin R.C.
        Deficiency of TDAG51 protects against atherosclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression.
        J. Am. Heart Assoc. 2013; 2: e000134
        • Maceyka M.
        • Spiegel S.
        Sphingolipid metabolites in inflammatory disease.
        Nature. 2014; 510: 58-67
        • Blaho V.A.
        • Hla T.
        An update on the biology of sphingosine 1-phosphate receptors.
        J. Lipid Res. 2014; 55: 1569-1608
        • Lucke S.
        • Levkau B.
        Endothelial functions of sphingosine-1-phosphate.
        Cell Physiol. Biochem. 2010; 26: 87-96
        • Weigert A.
        • Weis N.
        • Brüne B.
        Regulation of macrophage function by sphingosine-1-phosphate.
        Immunobiology. 2009; 214: 748-760
        • Keul P.
        • Lucke S.
        Wnuck Lipinski K von, Bode C, Gräler M, Heusch G, Levkau B. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis.
        Circ. Res. 2011; 108: 314-323
        • Christoffersen C.
        • Obinata H.
        • Kumaraswamy S.B.
        • Galvani S.
        • Ahnström J.
        • Sevvana M.
        • Egerer-Sieber C.
        • Muller Y.A.
        • Hla T.
        • Nielsen L.B.
        • Dahlbäck B.
        Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 9613-9618
        • Karuna R.
        • Park R.
        • Othman A.
        • Holleboom A.G.
        • Motazacker M.M.
        • Sutter I.
        • Kuivenhoven J.A.
        • Rohrer L.
        • Matile H.
        • Hornemann T.
        • Stoffel M.
        • Rentsch K.M.
        • von Eckardstein A.
        Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism.
        Atherosclerosis. 2011; 219: 855-863
        • Argraves K.
        • Sethi A.
        • Gazzolo P.
        • Wilkerson B.
        • Remaley A.
        • Tybjaerg-Hansen A.
        • Nordestgaard B.
        • Yeatts S.
        • Nicholas K.
        • Barth J.
        • Argraves W.
        S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease.
        Lipids Health Dis. 2011; 10: 70
        • Sattler K.
        • Gräler M.
        • Keul P.
        • Weske S.
        • Reimann C.M.
        • Jindrová H.
        • Kleinbongard P.
        • Sabbadini R.
        • Bröcker-Preuss M.
        • Erbel R.
        • Heusch G.
        • Levkau B.
        Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: correction by sphingosine-1-phosphate-loading.
        J. Am. Coll. Cardiol. 2015; 66: 1470-1485
        • Potì F.
        • Simoni M.
        • Nofer J.R.
        Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).
        Cardiovasc Res. 2014; 103: 395-404
        • Bligh E.G.
        • Dyer W.J.
        A rapid method of total lipid extraction and purification.
        Can. J. Biochem. Physiol. 1959; 37: 911-917
        • Lindegaard M.L.
        • Olivecrona G.
        • Christoffersen C.
        • Kratky D.
        • Hannibal J.
        • Petersen B.L.
        • Zechner R.
        • Damm P.
        • Nielsen L.B.
        Endothelial and lipoprotein lipases in human and mouse placenta.
        J. Lipid Res. 2005; 46: 2339-2346
        • Nguyen-Tran D.H.
        • Hait N.C.
        • Sperber H.
        • Qi J.
        • Fischer K.
        • Ieronimakis N.
        • Pantoja M.
        • Hays A.
        • Allegood J.
        • Reyes M.
        • Spiegel S.
        • Ruohola-Baker H.
        Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy.
        Dis. Model Mech. 2014; 7: 41-54
        • Ceglarek U.
        • Dittrich J.
        • Becker S.
        • Baumann F.
        • Kortz L.
        • Thiery J.
        Quantification of seven apolipoproteins in human plasma by proteotypic peptides using fast LC-MS/MS.
        Proteomics Clin. Appl. 2013; 7: 794-801
        • Ceglarek U.
        • Dittrich J.
        • Helmschrodt C.
        • Wagner K.
        • Nofer J.R.
        • Thiery J.
        • Becker S.
        Preanalytical standardization of sphingosine-1-phosphate, sphinganine-1-phosphate and sphingosine analysis in human plasma by liquid chromatography-tandem mass spectrometry.
        Clin. Chim. Acta. 2014; 435: 1-6
        • Decaudin D.
        • Geley S.
        • Hirsch T.
        • Castedo M.
        • Marchetti P.
        • Macho A.
        • Kofler R.
        • Kroemer G.
        Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents.
        Cancer Res. 1997; 57: 62-67
        • Price B.D.
        • Calderwood S.K.
        Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins.
        Cancer Res. 1992; 52: 3814-3817
        • Kerbiriou M.
        • Teng L.
        • Benz N.
        • Trouvé P.
        • Férec C.
        The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells.
        PLoS One. 2009; 4: e8436
        • Rao R.V.
        • Hermel E.
        • Castro-Obregon S.
        • del Rio G.
        • Ellerby L.M.
        • Ellerby H.M.
        • Bredesen D.E.
        Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation.
        J. Biol. Chem. 2001; 276: 33869-33874
        • Roy N.
        • Deveraux Q.L.
        • Takahashi R.
        • Salvesen G.S.
        • Reed J.C.
        The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases.
        EMBO J. 1997; 16: 6914-6925
        • Tamm I.
        • Wang Y.
        • Sausville E.
        • Scudiero D.A.
        • Vigna N.
        • Oltersdorf T.
        • Reed J.C.
        IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs.
        Cancer Res. 1998; 58: 5315-5320
        • Hu P.
        • Han Z.
        • Couvillon A.D.
        • Exton J.H.
        Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death.
        J. Biol. Chem. 2004; 279: 49420-49429
        • Sohn J.
        • Khaoustov V.I.
        • Xie Q.
        • Chung C.C.
        • Krishnan B.
        • Yoffe B.
        The effect of ursodeoxycholic acid on the survivin in thapsigargin-induced apoptosis.
        Cancer Lett. 2003; 191: 83-92
        • Nakamura N.
        • Yamauchi T.
        • Hiramoto M.
        • Yuri M.
        • Naito M.
        • Takeuchi M.
        • Yamanaka K.
        • Kita A.
        • Nakahara T.
        • Kinoyama I.
        • Matsuhisa A.
        • Kaneko N.
        • Koutoku H.
        • Sasamata M.
        • Yokota H.
        • Kawabata S.
        • Furuichi K.
        Interleukin enhancer-binding factor 3/NF110 is a target of YM155, a suppressant of survivin.
        Mol. Cell Proteomics. 2012; 11 (M111.013243)
        • Flygare J.A.
        • Beresini M.
        • Budha N.
        • Chan H.
        • Chan I.T.
        • Cheeti S.
        • Cohen F.
        • Deshayes K.
        • Doerner K.
        • Eckhardt S.G.
        • Elliott L.O.
        • Feng B.
        • Franklin M.C.
        • Reisner S.F.
        • Gazzard L.
        • Halladay J.
        • Hymowitz S.G.
        • La H.
        • LoRusso P.
        • Maurer B.
        • Murray L.
        • Plise E.
        • Quan C.
        • Stephan J.P.
        • Young S.G.
        • Tom J.
        • Tsui V.
        • Um J.
        • Varfolomeev E.
        • Vucic D.
        • Wagner A.J.
        • Wallweber H.J.
        • Wang L.
        • Ware J.
        • Wen Z.
        • Wong H.
        • Wong J.M.
        • Wong M.
        • Wong S.
        • Yu R.
        • Zobel K.
        • Fairbrother W.J.
        Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC0152).
        J. Med. Chem. 2012; 55: 4101-4113
        • Frias M.A.
        • James R.W.
        • Gerber-Wicht C.
        • Lang U.
        Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate.
        Cardiovasc Res. 2009; 82: 313-323
        • Sekine Y.
        • Suzuki K.
        • Remaley A.T.
        HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion.
        Prostate. 2011; 71: 690-699
        • Garrido C.
        • Galluzzi L.
        • Brunet M.
        • Puig P.E.
        • Didelot C.
        • Kroemer G.
        Mechanisms of cytochrome c release from mitochondria.
        Cell Death Differ. 2006; 13: 1423-1433
        • Sano R.
        • Reed J.C.
        ER stress-induced cell death mechanisms.
        Biochim. Biophys. Acta. 2013; 1833: 3460-3470
        • Shin S.
        • Sung B.J.
        • Cho Y.S.
        • Kim H.J.
        • Ha N.C.
        • Hwang J.I.
        • Chung C.W.
        • Jung Y.K.
        • Oh B.H.
        An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7.
        Biochemistry. 2001; 40: 1117-1123
        • Dohi T.
        • Okada K.
        • Xia F.
        • Wilford C.E.
        • Samuel T.
        • Welsh K.
        • Marusawa H.
        • Zou H.
        • Armstrong R.
        • Matsuzawa S.
        • Salvesen G.S.
        • Reed J.C.
        • Altieri D.C.
        An IAP-IAP complex inhibits apoptosis.
        J. Biol. Chem. 2004; 279: 34087-34090
        • Yang F.
        • Jove V.
        • Buettner R.
        • Xin H.
        • Wu J.
        • Wang Y.
        • Nam S.
        • Xu Y.
        • Ara T.
        • DeClerck Y.A.
        • Seeger R.
        • Yu H.
        • Jove R.
        Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis.
        Cancer Biol. Ther. 2012; 13: 534-541
        • Kanda N.
        • Seno H.
        • Konda Y.
        • Marusawa H.
        • Kanai M.
        • Nakajima T.
        • Kawashima T.
        • Nanakin A.
        • Sawabu T.
        • Uenoyama Y.
        • Sekikawa A.
        • Kawada M.
        • Suzuki K.
        • Kayahara T.
        • Fukui H.
        • Sawada M.
        • Chiba T.
        STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells.
        Oncogene. 2004; 23: 4921-4929
        • Gritsko T.
        • Williams A.
        • Turkson J.
        • Kaneko S.
        • Bowman T.
        • Huang M.
        • Nam S.
        • Eweis I.
        • Diaz N.
        • Sullivan D.
        • Yoder S.
        • Enkemann S.
        • Eschrich S.
        • Lee J.H.
        • Beam C.A.
        • Cheng J.
        • Minton S.
        • Muro-Cacho C.A.
        • Jove R.
        Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells.
        Clin. Cancer Res. 2006; 12: 11-19
        • Stella S.
        • Tirrò E.
        • Conte E.
        • Stagno F.
        • Di Raimondo F.
        • Manzella L.
        • Vigneri P.
        Suppression of survivin induced by a BCR-ABL/JAK2/STAT3 pathway sensitizes imatinib-resistant CML cells to different cytotoxic drugs.
        Mol. Cancer Ther. 2013; 12: 1085-1098
        • Liang J.
        • Nagahashi M.
        • Kim E.Y.
        • Harikumar K.B.
        • Yamada A.
        • Huang W.C.
        • Hait N.C.
        • Allegood J.C.
        • Price M.M.
        • Avni D.
        • Takabe K.
        • Kordula T.
        • Milstien S.
        • Spiegel S.
        Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer.
        Cancer Cell. 2013; 23: 107-120
        • Lee H.
        • Deng J.
        • Kujawski M.
        • Yang C.
        • Liu Y.
        • Herrmann A.
        • Kortylewski M.
        • Horne D.
        • Somlo G.
        • Forman S.
        • Jove R.
        • Yu H.
        STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors.
        Nat. Med. 2010; 16: 1421-1428
        • Garris C.S.
        • Wu L.
        • Acharya S.
        • Arac A.
        • Blaho V.A.
        • Huang Y.
        • Moon B.S.
        • Axtell R.C.
        • Ho P.P.
        • Steinberg G.K.
        • Lewis D.B.
        • Sobel R.A.
        • Han D.K.
        • Steinman L.
        • Snyder M.P.
        • Hla T.
        • Han M.H.
        Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation.
        Nat. Immunol. 2013; 14: 1166-1172
        • Liu Y.
        • Deng J.
        • Wang L.
        • Lee H.
        • Armstrong B.
        • Scuto A.
        • Kowolik C.
        • Weiss L.M.
        • Forman S.
        • Yu H.
        S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma.
        Blood. 2012; 120: 1458-1465
        • Frias M.A.
        • Lang U.
        • Gerber-Wicht C.
        • James R.W.
        Native and reconstituted HDL protect cardiomyocytes from doxorubicin-induced apoptosis.
        Cardiovasc Res. 2010; 85: 118-126
        • Sutter I.
        • Velagapudi S.
        • Othman A.
        • Riwanto M.
        • Manz J.
        • Rohrer L.
        • Rentsch K.
        • Hornemann T.
        • Landmesser U.
        • von Eckardstein A.
        Plasmalogens of high-density lipoproteins (HDL) are associated with coronary artery disease and anti-apoptotic activity of HDL.
        Atherosclerosis. 2015; 241: 539-546
        • Quint P.
        • Ruan M.
        • Pederson L.
        • Kassem M.
        • Westendorf J.J.
        • Khosla S.
        • Oursler M.J.
        Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways.
        J. Biol. Chem. 2013; 288: 5398-5406
        • Gurgui M.
        • Broere R.
        • Kalff J.C.
        • van Echten-Deckert G.
        Dual action of sphingosine 1-phosphate in eliciting proinflammatory responses in primary cultured rat intestinal smooth muscle cells.
        Cell Signal. 2010; 22: 1727-1733
        • Moran E.P.
        • Agrawal D.K.
        Increased expression of inhibitor of apoptosis proteins in atherosclerotic plaques of symptomatic patients with carotid stenosis.
        Exp. Mol. Pathol. 2007; 83: 11-16
        • Blanc-Brude O.P.
        • Teissier E.
        • Castier Y.
        • Lesèche G.
        • Bijnens A.P.
        • Daemen M.
        • Staels B.
        • Mallat Z.
        • Tedgui A.
        IAP survivin regulates atherosclerotic macrophage survival.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 901-907