Advertisement

Non-alcoholic fatty liver disease and subclinical atherosclerosis: A comparison of metabolically- versus genetically-driven excess fat hepatic storage

      Highlights

      • The role that excess hepatic fat (steatosis) plays in atherosclerosis is unclear.
      • CIMT is higher in metabolically-vs genetically-driven liver steatosis.
      • Hepatic fat content per se does not appear a risk factor for atherosclerosis.

      Abstract

      Background and aims

      Non-alcoholic fatty liver disease (NAFLD) is frequently associated with atherosclerosis. However, it is unclear whether this association is related to excess fat liver storage per se or to metabolic abnormalities that typically accompany NAFLD. To investigate this, we compared individuals with hepatic steatosis driven by metabolic disturbances to those with hepatic steatosis associated with the rs738409 GG genotype in the patatin-like phospholipase domain-containing 3 gene (PNPLA3).

      Methods

      Carotid intima-media thickness (CIMT), as a surrogate marker of subclinical atherosclerosis, was measured in 83 blood donors with the mutant GG genotype (group G), 100 patients with features of metabolic syndrome (MetS) but the wildtype CC genotype (group M), and 74 blood donors with the wildtype CC genotype (controls). Fatty liver was evaluated by ultrasonography and hepatic fat fraction (HFF) was measured using magnetic resonance (MRS/MRI) in 157 subjects.

      Results

      Compared with group G and controls, group M subjects were older and had increased adiposity indices, dyslipidemia, insulin resistance and elevated transaminase levels (all p < 0.05). They also had a more fatty liver on both ultrasonography and MRS/MRI. After adjustment for confounders (including severity of hepatic steatosis), the median CIMT in group M (0.84 [0.70–0.95] mm) was significantly greater than that in group G (0.66 [0.55–0.74] mm; p < 0.001), which was similar to that in controls (0.70 [0.64–0.81] mm). Results were similar in the subgroup evaluated using MRS/MRI.

      Conclusions

      Excess liver fat accumulation appeared to increase the burden of subclinical atherosclerosis only when it is associated with metabolic abnormalities.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Browning J.D.
        • Szczepaniak L.S.
        • Dobbins R.
        • Nuremberg P.
        • Horton J.D.
        • et al.
        Prevalence of hepatic steatosis in an urban population in United States: impact of ethnicity.
        Hepatology. 2004; 40: 1387-1395https://doi.org/10.1002/hep.20466
        • Chalasani N.
        • Younossi Z.
        • Lavine J.E.
        • Diehl A.M.
        • Brunt E.M.
        • et al.
        The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association.
        Gastroenterology. 2012; 142: 1592-1609https://doi.org/10.1053/j.gastro.2012.04.001
        • Nascimbeni F.
        • Pais R.
        • Bellentani S.
        • Paul Day C.
        • Ratziu V.
        • et al.
        From NAFLD in clinical practice to answers from guidelines.
        J. Hepatol. 2013; 59: 859-871
        • Younossi Z.M.
        • Koenig A.B.
        • Abdelatif D.
        • Fazel Y.
        • Henry L.
        • et al.
        Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.
        Hepatology. 2016; 64: 73-84https://doi.org/10.1002/hep.28431
        • Dongiovanni P.
        • Romeo S.
        • Valenti L.
        Genetic factors in the pathogenesis of nonalcoholic fatty liver and steatohepatitis.
        Biomed. Res. Int. 2015; 2015: 460190https://doi.org/10.1155/2015/460190
        • Bugianesi E.
        • Rosso C.
        • Cortez-Pinto H.
        How to diagnose NAFLD in 2016.
        J. Hepatol. 2016; 65: 643-644https://doi.org/10.1016/j.jhep.2016.05.038
        • Bhatia L.S.
        • Curzen N.P.
        • Calder P.C.
        • Byrne C.D.
        Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor?.
        Eur. Heart J. 2012; 33: 1190-1200https://doi.org/10.1093/eurheartj/ehr453
        • Madan S.A.
        • John F.
        • Pyrsopoulos N.
        • Pitchumoni C.S.
        Nonalcoholic fatty liver disease and carotid artery atherosclerosis in children and adults: a meta-analysis.
        Eur. J. Gastroenterol. Hepatol. 2015; 27: 1237-1248https://doi.org/10.1097/MEG.0000000000000429
        • Targher G.
        • Byrne C.D.
        • Lonardo A.
        • Zoppini G.
        • Barbui C.
        Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis.
        J. Hepatol. 2016; 65: 589-600https://doi.org/10.1016/j.jhep.2016.05.013
        • VanWagner L.B.
        • Ning H.
        • Lewis C.E.
        • Shay C.M.
        • Wilkins J.
        • et al.
        Associations between non-alcoholic fatty liver disease and subclinical atherosclerosis in middle-aged adults: the Coronary Artery Risk Development in Young Adults Study.
        Atherosclerosis. 2014; 235: 599-605https://doi.org/10.1016/j.atherosclerosis.2014.05.962
        • VanWagner L.B.
        • Wilcox J.E.
        • Colangelo L.A.
        • Lloyd-Jones D.M.
        • Carr J.J.
        • et al.
        Association of non-alcoholic fatty liver disease with subclinical myocardial remodelling and dysfunction: a population-based study.
        Hepatology. 2015; 62: 773-783https://doi.org/10.1002/hep.27869
        • Al Rifai M.
        • Silverman M.G.
        • Nasir K.
        • Budoff M.J.
        • Blankstein R.
        • et al.
        The association of non-alcoholic fatty liver disease, obesity, and metabolic syndrome, with systemic inflammation and subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis (MESA).
        Atherosclerosis. 2015; 239: 629-633https://doi.org/10.1016/j.atherosclerosis.2015.02.011
        • Loria P.
        • Marchesini G.
        • Nascimbeni F.
        • Ballestri S.
        • Maurantonio M.
        • et al.
        Cardiovascular risk, lipidemic phenotype and steatosis. A comparative analysis of cirrhotic and non-cirrhotic liver disease due to varying etiology.
        Atherosclerosis. 2014; 232: 99-109https://doi.org/10.1016/j.atherosclerosis
        • Yki-Järvinen H.
        Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome.
        Lancet Diabetes Endocrinol. 2014; 2: 901-910https://doi.org/10.1016/S2213-8587(14)70032-4
        • Lonardo A.
        • Sookoian S.
        • Pirola C.J.
        • Targher G.
        Non-alcoholic fatty liver disease and risk of cardiovascular disease.
        Metabolism. 2016; 65: 1136-1150https://doi.org/10.1016/j.metabol.2015.09.017
        • Adiels M.
        • Taskinen M.R.
        • Packard C.
        • Caslake M.J.
        • Soro-Paavonen A.
        • et al.
        Overproduction of large VLDL particles is driven by increased liver fat content in man.
        Diabetologia. 2006; 49: 755-765https://doi.org/10.1007/s00125-005-0125-z
        • Du T.
        • Sun X.
        • Yuan G.
        • Zhou X.
        • Lu H.
        • et al.
        Lipid phenotypes in patients with nonalcoholic fatty liver disease.
        Metabolism. 2016; 65: 1391-1398https://doi.org/10.1016/j.metabol.2016.06.006
        • Lonardo A.
        • Lombardini S.
        • Scaglioni F.
        • Carulli L.
        • Ricchi M.
        • et al.
        Hepatic steatosis and insulin resistance: does etiology make a difference?.
        J. Hepatol. 2006; 44: 190-196https://doi.org/10.1016/j.jhep.2005.06.018
        • Petäjä E.M.
        • Yki-Järvinen H.
        Definitions of normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD-a systematic review.
        Int. J. Mol. Sci. 2016; 27 (17(5). pii: E633)https://doi.org/10.3390/ijms17050633
        • Trépo E.
        • Romeo S.
        • Zucman-Rossi J.
        • Nahon P.
        PNPLA3 gene in liver diseases.
        J. Hepatol. 2016; 65: 399-412https://doi.org/10.1016/j.jhep.2016.03.011
        • Romeo S.
        • Kozlitina J.
        • Xing C.
        • Pertsemlidis A.
        • Cox D.
        • et al.
        Genetic variation in PNPLA3 confers susceptibility to non-alcoholic fatty liver disease.
        Nat. Genet. 2008; 40: 1461-1465https://doi.org/10.1038/ng.257
        • Sookoian S.
        • Pirola C.J.
        Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of non-alcoholic fatty liver disease.
        Hepatology. 2011; 53: 1883-1894https://doi.org/10.1002/hep.24283
        • Santoro N.
        • Kursawe R.
        • D'Adamo E.
        • Dykas D.J.
        • Zhang C.K.
        • et al.
        A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents.
        Hepatology. 2010; 52: 1281-1290https://doi.org/10.1002/hep.23832
        • Pirazzi C.
        • Adiels M.
        • Burza M.A.
        • Mancina R.M.
        • Levin M.
        • et al.
        Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro.
        J. Hepatol. 2012; 57: 1276-1282https://doi.org/10.1016/j.jhep.2012.07.030
        • Babor T.F.
        • Higgins-Biddle J.C.
        Brief Intervention for Hazardous and Harmful Drinking: a Manual for Use in Primary Care.
        World Health Organization, Geneva (Switzerland)2001 (WHO/MSD/MSB/01.6b)
        • Hamaguchi M.
        • Kojima T.
        • Itoh Y.
        • Harano Y.
        • Fujii K.
        • et al.
        The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation.
        Am. J. Gastroenterol. 2007; 102: 2708-2715https://doi.org/10.1111/j.1572-0241.2007.01526.x
        • Del Ben M.
        • Polimeni L.
        • Brancorsini M.
        • Di Costanzo A.
        • D'Erasmo L.
        • et al.
        Non-alcoholic fatty liver disease, metabolic syndrome and patatin-like phospholipase domain-containing protein3 gene variants.
        Eur. J. Intern Med. 2014; 25: 566-570https://doi.org/10.1016/j.ejim.2014.05.012
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • et al.
        Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • American Diabetes Association
        Diagnosis and classification of diabetes mellitus.
        Diabetes Care. 2010; 33: S62-S69https://doi.org/10.2337/dc10-S062
        • Grundy S.M.
        • Cleeman J.I.
        • Daniels S.R.
        • Donato K.A.
        • Eckel R.H.
        • et al.
        Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood institute scientific statement.
        Circulation. 2005; 112: 2735-2752https://doi.org/10.1161/CIRCULATIONAHA.105.169404
        • Stein J.H.
        • Korcarz C.E.
        • Hurst R.T.
        • Lonn E.
        • Kendall C.B.
        • et al.
        American society of Echocardiography carotid intima-media thickness task force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American society of Echocardiography carotid intima-media thickness task force. Endorsed by the society for vascular medicine.
        J. Am. Soc. Echocardiogr. 2008; 21 (quiz 189-90): 93-111https://doi.org/10.1016/j.echo.2007.11.011
        • Perk J.
        • De Backer G.
        • Gohlke H.
        • Graham I.
        • Reiner Z.
        • et al.
        European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts).
        Eur. Heart J. 2012; 33: 1635-1701https://doi.org/10.1093/eurheartj/ehs092
        • Bril F.
        • Ortiz-Lopez C.
        • Lomonaco R.
        • Orsak B.
        • Freckleton M.
        Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients.
        Liver Int. 2015; 35: 2139-2146https://doi.org/10.1111/liv.12840
        • Oh H.
        • Jun D.W.
        • Saeed W.K.
        • Nguyen M.H.
        Non-alcoholic fatty liver diseases: update on the challenge of diagnosis and treatment.
        Clin. Mol. Hepatol. 2016; 22: 327-335https://doi.org/10.3350/cmh.2016.0049
        • McPherson S.
        • Jonsson J.R.
        • Cowin G.J.
        • O'Rourke P.
        • Clouston A.D.
        • et al.
        Magnetic resonance imaging and spectroscopy accurately estimate the severity of steatosis provided the stage of fibrosis is considered.
        J. Hepatol. 2009; 51: 389-397https://doi.org/10.1016/j.jhep.2009.04.012
        • Yokoo T.
        • Shiehmorteza M.
        • Hamilton G.
        • Wolfson T.
        • Schroeder M.E.
        • et al.
        Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T.
        Radiology. 2011; 258: 749-759https://doi.org/10.1148/radiol.10100659
        • Demerath E.W.
        • Ritter K.J.
        • Couch W.A.
        • Rogers N.L.
        • Moreno G.M.
        • et al.
        Validity of a new automated software program for visceral adipose tissue estimation.
        Int. J. Obes. (Lond). 2007; 31: 285-291https://doi.org/10.1038/sj.ijo.0803409
        • Bruin J.
        UCLA: Statistical Consulting Group.
        2006
        • Speliotes E.K.
        • Yerges-Armstrong L.M.
        • Wu J.
        • Hernaez R.
        • Kim L.J.
        • et al.
        Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.
        PLoS Genet. 2011; 7: e1001324https://doi.org/10.1371/journal.pgen.1001324
        • Fargion S.
        • Porzio M.
        • Fracanzani A.L.
        Nonalcoholic fatty liver disease and vascular disease: state-of-the-art.
        World J. Gastroenterol. 2014; 20: 13306-13324https://doi.org/10.3748/wjg.v20.i37.13306
        • Hamaguchi M.
        • Kojima T.
        • Takeda N.
        • Nagata C.
        • Takeda J.
        • et al.
        Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease.
        World J. Gastroenterol. 2007; 13: 1579-1584https://doi.org/10.3748/wjg.v13.i10.1579
        • Anstee Q.M.
        • Day C.P.
        The genetics of nonalcoholic fatty liver disease: spotlight on PNPLA3 and TM6SF2.
        Semin. Liver Dis. 2015; 35: 270-290https://doi.org/10.1055/s-0035-1562947
        • Mancina R.M.
        • Dongiovanni P.
        • Petta S.
        • Pingitore P.
        • Meroni M.
        • et al.
        The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent.
        Gastroenterology. 2016; 150: 1219-1230.e6https://doi.org/10.1053/j.gastro.2016.01.032
        • Fox C.S.
        • Massaro J.M.
        • Hoffmann U.
        • Pou K.M.
        • Maurovich-Horvat P.
        • et al.
        Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study.
        Circulation. 2007; 3;116: 39-48https://doi.org/10.1161/CIRCULATIONAHA.106.675355
        • Neeland I.J.
        • Ayers C.R.
        • Rohatgi A.K.
        • Turer A.T.
        • Berry J.D.
        • et al.
        Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults.
        Obes. (Silver Spring). 2013; 21: E439-E447https://doi.org/10.1002/oby.20135
        • Gast K.B.
        • den Heijer M.
        • Smit J.W.
        • Widya R.L.
        • Lamb H.J.
        • et al.
        Individual contributions of visceral fat and total body fat to subclinical atherosclerosis: the NEO study.
        Atherosclerosis. 2015; 241: 547-554https://doi.org/10.1016/j.atherosclerosis.2015.05.026
        • Wajchenberg B.L.
        • Giannella-Neto D.
        • da Silva M.E.
        • Santos R.F.
        Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome.
        Horm. Metab. Res. 2002; 34: 616-621https://doi.org/10.1055/s-2002-38256
        • Hyysalo J.
        • Stojkovic I.
        • Kotronen A.
        • Hakkarainen A.
        • Sevastianova K.
        • et al.
        Genetic variation in PNPLA3 but not APOC3 influences liver fat in non-alcoholic fatty liver disease.
        J. Gastroenterol. Hepatol. 2012; 27: 951-956https://doi.org/10.1111/j.1440-1746.2011.07045.x
        • Di Martino M.
        • Pacifico L.
        • Bezzi M.
        • Di Miscio R.
        • Sacconi B.
        • et al.
        Comparison of MR Spectroscopy, proton density fat fraction and Histological analysis in the quantification of liver steatosis in children and adolescents.
        World J. Gastroenterol. 2016; 22: 8812-8819
        • Matthias W.
        • Lorenz Hugh S.
        • Michiel Markus
        • Bots L.
        • Rosvall Maria
        • Sitzer Matthias
        Prediction of clinical cardiovascular events with carotid intima-media thickness.
        Circulation. 2007; 115: 459-467