Advertisement

Molecular genetics of familial hypercholesterolemia in Israel–revisited

      Highlights

      • Sequencing of familial hypercholesterolemia (FH) Israeli individuals recruited through the MedPed project.
      • 35.8% of sequenced subjects had an FH mutation.
      • New spectrum of FH mutations found reflecting heterogeneous and changing Israeli population.
      • A significantly higher 6-SNP LDL-C score was found in mutation-negative cases.

      Abstract

      Background and aims

      Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the genes for LDL receptor (LDLR), apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type9 (PCSK9). The purpose of the current investigation was to define the current spectrum of mutations causing FH in Israel.

      Methods

      New families were collected through the MEDPED (Make Early Diagnosis Prevent Early Death) FH program. Molecular analysis of the LDLR, PCSK9 and APOB genes was done using High Resolution Melt and direct sequencing in 67 index cases. A 6-SNP LDL-C gene score calculation for polygenic hypercholesterolaemia was done using TaqMan genotyping.

      Results

      Mean serum cholesterol was 7.48 ± 1.89 mmol/L and the mean serum LDL-C was 5.99 ± 1.89 mmol/L. Mutations in the LDLR and APOB gene were found in 24 cases (35.8%), with 16 in LDLR, none in PCSK9 and one, p.(R3527Q), in the APOB gene, which is the first APOB mutation carrier identified in the Israeli population. Of the LDLR mutations, two were novel; p.(E140A) and a promoter variant, c.-191C > A. The c.2479G > A p.(V827I) in exon 17 of the LDLR gene was found in 8 patients (33.3% of the mutations) with modestly elevated LDL-C, but also in a compound heterozygous patient with a clinical homozygous FH phenotype, consistent with this being a “mild” FH-causing variant. A significantly higher 6-SNP LDL-C score was found in mutation-negative cases compared with a normal Caucasian cohort (p = 0.03), confirming that polygenic inheritance of common LDL-C raising SNPs can produce an FH phenocopy.

      Conclusions

      The results indicate a different spectrum of genetic causes of FH from that found previously, in concordance with the heterogeneous and changing origins of the Israeli population, and confirm that a polygenic cause is also contributing to the FH phenotype in Israel.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marks D.
        • Thorogood M.
        • Neil H.A.
        • Humphries S.E.
        A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia.
        Atherosclerosis. 2003; 168: 1-14
        • Ciccarese M.
        • Pacifico A.
        • Tonolo G.
        • Pintus P.
        • Nikoshkov A.
        • Zuliani G.
        • et al.
        A new locus for autosomal recessive hypercholesterolemia maps to human chromosome 15q25-q26.
        Am. J. Hum. Genet. 2000; 66: 453-460
        • Garcia C.K.
        • Wilund K.
        • Arca M.
        • Zuliani G.
        • Fellin R.
        • Maioli M.
        • et al.
        Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein.
        Science. 2001; 292: 1394-1398
        • Taylor A.
        • Patel K.
        • Tsedeke J.
        • Humphries S.E.
        • Norbury G.
        Mutation screening in patients for familial hypercholesterolaemia (ADH).
        Clin. Genet. 2010; 77: 97-99
        • Hobbs H.H.
        • Brown M.S.
        • Goldstein J.L.
        Molecular genetics of the LDL receptor gene in familial hypercholesterolemia.
        Hum. Mutat. 1992; 1: 445-466
        • Knowles J.W.
        • O'Brien E.C.
        • Greendale K.
        • Wilemon K.
        • Genest J.
        • Sperling L.S.
        • et al.
        Reducing the burden of disease and death from familial hypercholesterolemia: a call to action.
        Am. Heart J. 2014; 168: 807-811
        • Khachadurian A.K.
        • Uthman S.M.
        Experiences with the homozygous cases of familial hypercholesterolemia. A report of 52 patients.
        Nutr. Metab. 1973; 15: 132-140
        • Moorjani S.
        • Roy M.
        • Gagne C.
        • Davignon J.
        • Brun D.
        • Toussaint M.
        • et al.
        Homozygous familial hypercholesterolemia among French Canadians in Quebec Province.
        Arteriosclerosis. 1989; 9: 211-216
        • Seftel H.C.
        • Baker S.G.
        • Sandler M.P.
        • Forman M.B.
        • Joffe B.I.
        • Mendelsohn D.
        • et al.
        A host of hypercholesterolaemic homozygotes in South Africa.
        Br. Med. J. 1980; 281: 633-636
        • Lehrman M.A.
        • Schneider W.J.
        • Brown M.S.
        • Davis C.G.
        • Elhammer A.
        • Russell D.W.
        • et al.
        The Lebanese allele at the low density lipoprotein receptor locus. Nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum.
        J. Biol. Chem. 1987; 262: 401-410
        • Hobbs H.H.
        • Brown M.S.
        • Russell D.W.
        • Davignon J.
        • Goldstein J.L.
        Deletion in the gene for the low-density-lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia.
        N. Engl. J. Med. 1987; 317: 734-737
        • Leitersdorf E.
        • Van der Westhuyzen D.R.
        • Coetzee G.A.
        • Hobbs H.H.
        Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.
        J. Clin. Invest. 1989; 84: 954-961
        • Aalto-Setala K.
        • Helve E.
        • Kovanen P.T.
        • Kontula K.
        Finnish type of low density lipoprotein receptor gene mutation (FH-Helsinki) deletes exons encoding the carboxy-terminal part of the receptor and creates an internalization-defective phenotype.
        J. Clin. Invest. 1989; 84: 499-505
        • Oppenheim A.
        • Friedlander Y.
        • Dann E.J.
        • Berkman N.
        • Schwartz S.P.
        • Leitersdorf E.
        Hypercholesterolemia in five Israeli Christian-Arab kindreds is caused by the "Lebanese" allele at the low density lipoprotein receptor gene locus and by an additional independent major factor.
        Hum. Genet. 1991; 88: 75-84
        • Durst R.
        • Colombo R.
        • Shpitzen S.
        • Avi L.B.
        • Friedlander Y.
        • Wexler R.
        • et al.
        Recent origin and spread of a common Lithuanian mutation, G197del LDLR, causing familial hypercholesterolemia: positive selection is not always necessary to account for disease incidence among Ashkenazi Jews.
        Am. J. Hum. Genet. 2001; 68: 1172-1188
        • Landsberger D.
        • Meiner V.
        • Reshef A.
        • Levy Y.
        • van der Westhuyzen D.R.
        • Coetzee G.A.
        • et al.
        A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect.
        Am. J. Hum. Genet. 1992; 50: 427-433
        • Maruyama T.
        • Miyake Y.
        • Tajima S.
        • Harada-Shiba M.
        • Yamamura T.
        • Tsushima M.
        • et al.
        Common mutations in the low-density-lipoprotein–receptor gene causing familial hypercholesterolemia in the Japanese population.
        Arteriosclerosis, Thrombosis, Vasc. Biol. 1995; 15: 1713-1718
        • Risch N.
        • Tang H.
        • Katzenstein H.
        • Ekstein J.
        Geographic distribution of disease mutations in the Ashkenazi Jewish population supports genetic drift over selection.
        Am. J. Hum. Genet. 2003; 72: 812-822
        • Karpati M.
        • Gazit E.
        • Goldman B.
        • Frisch A.
        • Colombo R.
        • Peleg L.
        Specific mutations in the HEXA gene among Iraqi Jewish Tay-Sachs disease carriers: dating of founder ancestor.
        Neurogenetics. 2004; 5: 35-40
        • Reshef A.
        • Nissen H.
        • Triger L.
        • Hensen T.S.
        • Eliav O.
        • Schurr D.
        • et al.
        Molecular genetics of familial hypercholesterolemia in Israel.
        Hum. Genet. 1996; 98: 581-586
        • Williams R.R.
        • Hamilton-Craig I.
        • Kostner G.M.
        • Hegele R.A.
        • Hayden M.R.
        • Pimstone S.N.
        • et al.
        MED-PED: an integrated genetic strategy for preventing early deaths.
        in: Berg K. Boulyjenkov V. Christen Y. Genetic Approaches to Noncommunicable Diseases. Springer Berlin Heidelberg, 1996: 35-45
        • Talmud P.J.
        • Shah S.
        • Whittall R.
        • Futema M.
        • Howard P.
        • Cooper J.A.
        • et al.
        Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study.
        Lancet. 2013; 381: 1293-1301
        • Teslovich T.M.
        • Musunuru K.
        • Smith A.V.
        • Edmondson A.C.
        • Stylianou I.M.
        • Koseki M.
        • et al.
        Biological, clinical and population relevance of 95 loci for blood lipids.
        Nature. 2010; 466: 707-713
        • Friedewald W.T.
        • Levy R.I.
        • Fredrickson D.S.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
        Clin. Chem. 1972; 18: 499-502
        • Whittall R.A.
        • Scartezini M.
        • Li K.
        • Hubbart C.
        • Reiner Z.
        • Abraha A.
        • et al.
        Development of a high-resolution melting method for mutation detection in familial hypercholesterolaemia patients.
        Ann. Clin. Biochem. 2010; 47: 44-55
        • Adzhubei I.A.
        • Schmidt S.
        • Peshkin L.
        • Ramensky V.E.
        • Gerasimova A.
        • Bork P.
        • et al.
        A method and server for predicting damaging missense mutations.
        Nat. Methods. 2010; 7: 248-249
        • Kumar P.
        • Henikoff S.
        • Ng P.C.
        Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
        Nat. Protoc. 2009; 4: 1073-1081
        • Reese M.G.
        • Eeckman F.H.
        • Kulp D.
        • Haussler D.
        Improved splice site detection in Genie.
        J. Comput. Biol. 1997; 4: 311-323
        • Schwarz J.M.
        • Rodelsperger C.
        • Schuelke M.
        • Seelow D.
        MutationTaster evaluates disease-causing potential of sequence alterations.
        Nat. Methods. 2010; 7: 575-576
        • Futema M.
        • Shah S.
        • Cooper J.A.
        • Li K.
        • Whittall R.A.
        • Sharifi M.
        • et al.
        Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries.
        Clin. Chem. 2015; 61: 231-238
        • Marmot M.G.
        • Smith G.D.
        • Stansfeld S.
        • Patel C.
        • North F.
        • Head J.
        • et al.
        Health inequalities among British civil servants: the Whitehall II study.
        Lancet. 1991; 337: 1387-1393
        • Gonzalez-Garay M.L.
        • McGuire A.L.
        • Pereira S.
        • Caskey C.T.
        Personalized genomic disease risk of volunteers.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 16957-16962
        • Zakharova F.M.
        • Damgaard D.
        • Mandelshtam M.Y.
        • Golubkov V.I.
        • Nissen P.H.
        • Nilsen G.G.
        • et al.
        Familial hypercholesterolemia in St-Petersburg: the known and novel mutations found in the low density lipoprotein receptor gene in Russia.
        BMC Med. Genet. 2005; 6: 6
        • Marks D.
        • Thorogood M.
        • Neil H.A.W.
        • Wonderling D.
        • Humphries S.E.
        Comparing costs and benefits over a 10 year period of strategies for familial hypercholesterolaemia screening.
        J. Public Health. 2003; 25: 47-52
        • Usifo E.
        • Leigh S.E.
        • Whittall R.A.
        • Lench N.
        • Taylor A.
        • Yeats C.
        • et al.
        Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment.
        Ann. Hum. Genet. 2012; 76: 387-401
        • Fouchier S.W.
        • Defesche J.C.
        • Umans-Eckenhausen M.W.
        • Kastelein J.P.
        The molecular basis of familial hypercholesterolemia in The Netherlands.
        Hum. Genet. 2001; 109: 602-615
        • De Castro-Oros I.
        • Pampin S.
        • Bolado-Carrancio A.
        • De Cubas A.
        • Palacios L.
        • Plana N.
        • et al.
        Functional analysis of LDLR promoter and 5' UTR mutations in subjects with clinical diagnosis of familial hypercholesterolemia.
        Hum. Mutat. 2011; 32: 868-872
        • Chen W.J.
        • Goldstein J.L.
        • Brown M.S.
        NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor.
        J. Biol. Chem. 1990; 265: 3116-3123
        • Dvir H.
        • Shah M.
        • Girardi E.
        • Guo L.
        • Farquhar M.G.
        • Zajonc D.M.
        Atomic structure of the autosomal recessive hypercholesterolemia phosphotyrosine-binding domain in complex with the LDL-receptor tail.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 6916-6921
        • Humphries S.E.
        • Whittall R.A.
        • Hubbart C.S.
        • Maplebeck S.
        • Cooper J.A.
        • Soutar A.K.
        • et al.
        Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk.
        J. Med. Genet. 2006; 43: 943-949
        • Taylor A.
        • Wang D.
        • Patel K.
        • Whittall R.
        • Wood G.
        • Farrer M.
        • et al.
        Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project.
        Clin. Genet. 2010; 77: 572-580
      1. Miyake Y, Yamamura T, Sakai N, Miyata T, Kokubo Y, Yamamoto A. Update of Japanese common LDLR gene mutations and their phenotypes: mild type mutation L547V might predominate in the Japanese population. Atherosclerosis.203(1):153–160.

        • Han S.M.
        • Hwang B.
        • Park T.G.
        • Kim D.I.
        • Rhee M.Y.
        • Lee B.K.
        • et al.
        Genetic testing of korean familial hypercholesterolemia using whole-exome sequencing.
        PLoS One. 2015; 10: e0126706
        • Thomas E.R.A.
        • Atanur S.S.
        • Norsworthy P.J.
        • Encheva V.
        • Snijders A.P.
        • Game L.
        • et al.
        Identification and biochemical analysis of a novel APOB mutation that causes autosomal dominant hypercholesterolemia.
        Mol. Genet. Genomic Med. 2013; 1: 155-161
        • Dedoussis G.V.
        • Skoumas J.
        • Pitsavos C.
        • Choumerianou D.M.
        • Genschel J.
        • Schmidt H.
        • et al.
        FH clinical phenotype in Greek patients with LDL-R defective vs. negative mutations.
        Eur. J. Clin. Invest. 2004; 34: 402-409
        • Leitersdorf E.
        • Reshef A.
        • Meiner V.
        • Dann E.J.
        • Beigel Y.
        • van Roggen F.G.
        • et al.
        A missense mutation in the low density lipoprotein receptor gene causes familial hypercholesterolemia in Sephardic Jews.
        Hum. Genet. 1993; 91: 141-147
        • Pereira E.
        • Ferreira R.
        • Hermelin B.
        • Thomas G.
        • Bernard C.
        • Bertrand V.
        • et al.
        Recurrent and novel LDL receptor gene mutations causing heterozygous familial hypercholesterolemia in La Habana.
        Hum. Genet. 1995; 96: 319-322
        • Day I.N.M.
        • Whittall R.A.
        • O'Dell S.D.
        • Haddad L.
        • Bolla M.K.
        • Gudnason V.
        • et al.
        Spectrum of LDL receptor gene mutations in heterozygous familial hypercholesterolemia.
        Hum. Mutat. 1997; 10: 116-127
        • Defesche J.C.
        • Schuurman E.J.
        • Klaaijsen L.N.
        • Khoo K.L.
        • Wiegman A.
        • Stalenhoef A.F.
        Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing.
        Clin. Genet. 2008; 73: 573-578
        • Widhalm K.
        • Dirisamer A.
        • Lindemayr A.
        • Kostner G.
        Diagnosis of families with familial hypercholesterolaemia and/or Apo B-100 defect by means of DNA analysis of LDL-receptor gene mutations.
        J. Inherit. Metab. Dis. 2007; 30: 239-247
        • Tybjaerg-Hansen A.
        • Steffensen R.
        • Meinertz H.
        • Schnohr P.
        • Nordestgaard B.G.
        Association of mutations in the apolipoprotein B gene with hypercholesterolemia and the risk of ischemic heart disease.
        N Engl. J. Med. 1998; 338: 1577-1584