Advertisement

Uremia modulates the phenotype of aortic smooth muscle cells

      Highlights

      • Accelerated atherosclerosis and increased systemic inflammation.
      • Phenotypic modulation of smooth muscle cells in the aorta.
      • Decreased aortic contractility.

      Abstract

      Background and aims

      Chronic kidney disease leads to uremia and markedly accelerates atherosclerosis. Phenotypic modulation of smooth muscle cells (SMCs) in the arterial media plays a key role in accelerating atherogenesis. The aim of this study was to investigate whether uremia per se modulates the phenotype of aortic SMCs in vivo.

      Methods

      Moderate uremia was induced by 5/6 nephrectomy in apolipoprotein E knockout (ApoE-/-) and wildtype C57Bl/6 mice. Plasma analysis, gene expression, histology, and myography were used to determine uremia-mediated changes in the arterial wall.

      Results

      Induction of moderate uremia in ApoE-/- mice increased atherosclerosis in the aortic arch en face 1.6 fold (p = 0.04) and induced systemic inflammation. Based on histological analyses of aortic root sections, uremia increased the medial area, while there was no difference in the content of elastic fibers or collagen in the aortic media. In the aortic arch, mRNA and miRNA expression patterns were consistent with a uremia-mediated phenotypic modulation of SMCs; e.g. downregulation of myocardin, α-smooth muscle actin, and transgelin; and upregulation of miR146a. Notably, these expression patterns were observed after acute (2 weeks) and chronic (19 and 30 weeks) uremia, both under normo- and hypercholesterolemic settings. Functionally, aortic constriction was decreased in uremic as compared to non-uremic aorta segments, as measured by myography.

      Conclusions

      Uremia modulates the phenotype of aortic SMCs as determined by mRNA/miRNA expression, an increased medial area, and decreased aortic contractility. We propose that this phenotypic modulation of SMCs precedes the acceleration of atherosclerosis observed in uremic mice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vanholder R.
        • Massy Z.
        • Argiles A.
        • Spasovski G.
        • Verbeke F.
        • et al.
        Chronic kidney disease as cause of cardiovascular morbidity and mortality.
        Nephrol. Dial. Transpl. 2005 June; 20: 1048-1056
        • Olechnowicz-Tietz S.
        • Gluba A.
        • Paradowska A.
        • Banach M.
        • Rysz J.
        The risk of atherosclerosis in patients with chronic kidney disease.
        Int. Urol. Nephrol. 2013 December; 45: 1605-1612
        • Foley R.N.
        • Murray A.M.
        • Li S.
        • Herzog C.A.
        • McBean A.M.
        • et al.
        Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999.
        J. Am. Soc. Nephrol. 2005 February; 16: 489-495
        • Schneider A.
        • Jardine A.G.
        • Schneider M.P.
        • Holdaas H.
        • Holme I.
        • et al.
        Determinants of cardiovascular risk in haemodialysis patients: post hoc analyses of the AURORA study.
        Am. J. Nephrol. 2013; 37: 144-151
        • Stenvinkel P.
        • Carrero J.J.
        • Axelsson J.
        • Lindholm B.
        • Heimburger O.
        • et al.
        Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle?.
        Clin. J. Am. Soc. Nephrol. 2008 March; 3: 505-521
        • Hou W.
        • Lv J.
        • Perkovic V.
        • Yang L.
        • Zhao N.
        • et al.
        Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis.
        Eur. Heart J. 2013 June; 34: 1807-1817
        • Boaz M.
        • Smetana S.
        • Weinstein T.
        • Matas Z.
        • Gafter U.
        • et al.
        Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial.
        Lancet. 2000 October 7; 356: 1213-1218
        • Manjunath G.
        • Tighiouart H.
        • Ibrahim H.
        • MacLeod B.
        • Salem D.N.
        • et al.
        Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community.
        J. Am. Coll. Cardiol. 2003 January 1; 41: 47-55
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N. Engl. J. Med. 2004 September 23; 351: 1296-1305
        • Eckardt K.U.
        • Coresh J.
        • Devuyst O.
        • Johnson R.J.
        • Kottgen A.
        • et al.
        Evolving importance of kidney disease: from subspecialty to global health burden.
        Lancet. 2013 July 13; 382: 158-169
        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        Progress and challenges in translating the biology of atherosclerosis.
        Nature. 2011 May 19; 473: 317-325
        • Doran A.C.
        • Meller N.
        • McNamara C.A.
        Role of smooth muscle cells in the initiation and early progression of atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2008 May; 28: 812-819
        • Miano J.M.
        Myocardin in biology and disease.
        J. Biomed. Res. 2015 January; 29: 3-19
        • Zheng X.L.
        Myocardin and smooth muscle differentiation.
        Arch. Biochem. Biophys. 2014 February 1; 543: 48-56
        • Long X.
        • Bell R.D.
        • Gerthoffer W.T.
        • Zlokovic B.V.
        • Miano J.M.
        Myocardin is sufficient for a smooth muscle-like contractile phenotype.
        Arterioscler. Thromb. Vasc. Biol. 2008 August; 28: 1505-1510
        • Shankman L.S.
        • Gomez D.
        • Cherepanova O.A.
        • Salmon M.
        • Alencar G.F.
        • et al.
        KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis.
        Nat. Med. 2015 June; 21: 628-637
        • Feil S.
        • Fehrenbacher B.
        • Lukowski R.
        • Essmann F.
        • Schulze-Osthoff K.
        • et al.
        Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis.
        Circ. Res. 2014 September 12; 115: 662-667
        • Allahverdian S.
        • Pannu P.S.
        • Francis G.A.
        Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation.
        Cardiovasc Res. 2012 July 15; 95: 165-172
        • Vengrenyuk Y.
        • Nishi H.
        • Long X.
        • Ouimet M.
        • Savji N.
        • et al.
        Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype.
        Arterioscler. Thromb. Vasc. Biol. 2015 March; 35: 535-546
        • Bro S.
        • Bentzon J.F.
        • Falk E.
        • Andersen C.B.
        • Olgaard K.
        • et al.
        Chronic renal failure accelerates atherogenesis in apolipoprotein E-deficient mice.
        J. Am. Soc. Nephrol. 2003 October; 14: 2466-2474
        • Pedersen T.X.
        • Madsen M.
        • Junker N.
        • Christoffersen C.
        • Vikesa J.
        • et al.
        Osteopontin deficiency dampens the pro-atherogenic effect of uraemia.
        Cardiovasc Res. 2013 June 1; 98: 352-359
        • Massy Z.A.
        • Ivanovski O.
        • Nguyen-Khoa T.
        • Angulo J.
        • Szumilak D.
        • et al.
        Uremia accelerates both atherosclerosis and arterial calcification in apolipoprotein E knockout mice.
        J. Am. Soc. Nephrol. 2005 January; 16: 109-116
        • Bro S.
        • Borup R.
        • Andersen C.B.
        • Møller F.
        • Olgaard K.
        • et al.
        Uremia-specific effects in the arterial media during development of uremic atherosclerosis in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2006 March; 26: 570-575
        • Pedersen T.X.
        • Bro S.
        • Andersen M.H.
        • Etzerodt M.
        • Jauhiainen M.
        • et al.
        Effect of treatment with human apolipoprotein A-I on atherosclerosis in uremic apolipoprotein-E deficient mice.
        Atherosclerosis. 2009 February; 202: 372-381
        • Sun S.G.
        • Zheng B.
        • Han M.
        • Fang X.M.
        • Li H.X.
        • et al.
        miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation.
        EMBO Rep. 2011 January; 12: 56-62
        • Bro S.
        • Møller F.
        • Andersen C.B.
        • Olgaard K.
        • Nielsen L.B.
        Increased expression of adhesion molecules in uremic atherosclerosis in apolipoprotein-E-deficient mice.
        J. Am. Soc. Nephrol. 2004 June; 15: 1495-1503
        • Amann K.
        • Wolf B.
        • Nichols C.
        • Tornig J.
        • Schwarz U.
        • et al.
        Aortic changes in experimental renal failure: hyperplasia or hypertrophy of smooth muscle cells?.
        Hypertension. 1997 March; 29: 770-775
        • Davis-Dusenbery B.N.
        • Wu C.
        • Hata A.
        Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation.
        Arterioscler. Thromb. Vasc. Biol. 2011 November; 31: 2370-2377
        • Talasila A.
        • Yu H.
        • Ackers-Johnson M.
        • Bot M.
        • van B.T.
        • et al.
        Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta.
        Arterioscler. Thromb. Vasc. Biol. 2013 October; 33: 2355-2365
        • Dong S.
        • Xiong W.
        • Yuan J.
        • Li J.
        • Liu J.
        • et al.
        MiRNA-146a regulates the maturation and differentiation of vascular smooth muscle cells by targeting NF-kappaB expression.
        Mol. Med. Rep. 2013 August; 8: 407-412
        • Cao J.
        • Zhang K.
        • Zheng J.
        • Dong R.
        MicroRNA-146a and -21 cooperate to regulate vascular smooth muscle cell proliferation via modulation of the Notch signaling pathway.
        Mol. Med. Rep. 2015 April; 11: 2889-2895
        • Ji R.
        • Cheng Y.
        • Yue J.
        • Yang J.
        • Liu X.
        • et al.
        MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.
        Circ. Res. 2007 June 8; 100: 1579-1588
        • Raitoharju E.
        • Lyytikainen L.P.
        • Levula M.
        • Oksala N.
        • Mennander A.
        • et al.
        miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study.
        Atherosclerosis. 2011 November; 219: 211-217
        • Sener G.
        • Paskaloglu K.
        • Satiroglu H.
        • Alican I.
        • Kacmaz A.
        • et al.
        L-carnitine ameliorates oxidative damage due to chronic renal failure in rats.
        J. Cardiovasc Pharmacol. 2004 May; 43: 698-705
        • Nguy L.
        • Nilsson H.
        • Lundgren J.
        • Johansson M.E.
        • Teerlink T.
        • et al.
        Vascular function in rats with adenine-induced chronic renal failure.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012 June 15; 302: R1426-R1435
        • Shelkovnikov S.
        • Summers S.M.
        • Elahimehr R.
        • Adams G.
        • Purdy R.E.
        • et al.
        Effect of exercise training on aortic tone in chronic renal insufficiency.
        Am. J. Hypertens. 2008 May; 21: 564-569
        • Kokubo T.
        • Ishikawa N.
        • Uchida H.
        • Chasnoff S.E.
        • Xie X.
        • et al.
        CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas.
        J. Am. Soc. Nephrol. 2009 June; 20: 1236-1245
        • Langer S.
        • Kokozidou M.
        • Heiss C.
        • Kranz J.
        • Kessler T.
        • et al.
        Chronic kidney disease aggravates arteriovenous fistula damage in rats.
        Kidney Int. 2010 December; 78: 1312-1321
        • Boersema M.
        • Katta K.
        • Rienstra H.
        • Molema G.
        • Nguyen T.Q.
        • et al.
        Local medial microenvironment directs phenotypic modulation of smooth muscle cells after experimental renal transplantation.
        Am. J. Transpl. 2012 June; 12: 1429-1440
        • Monroy M.A.
        • Fang J.
        • Li S.
        • Ferrer L.
        • Birkenbach M.P.
        • et al.
        Chronic kidney disease alters vascular smooth muscle cell phenotype.
        Front. Biosci. (Landmark Ed. 2015 January 1; 20 (784-95): 784-795