Highlights
- •Consuming tomato and tomato products is associated with potential beneficial effects to health.
- •Current evidence indicates that consuming tomato improves some blood lipids, blood pressure and endothelial function.
- •Tomato consumption may potentially reduce the risk of cardiovascular diseases and mortality.
- •The effects of consuming tomato on novel biomarkers of vascular risk needs further investigation.
Abstract
Background and aims
Epidemiological evidence suggests an association between consumption of tomato products
or lycopene and lower risk for cardiovascular diseases (CVD). Our aim was to evaluate
the state of the evidence from intervention trials on the effect of consuming tomato
products and lycopene on markers of cardiovascular (CV) function. We undertook a systematic
review and meta-analysis on the effect of supplementing tomato and lycopene on CV
risk factors.
Methods
Three databases including Medline, Web of science, and Scopus were searched from inception
to August 2016. Inclusion criteria were: intervention trials reporting effects of
tomato products and lycopene supplementation on CV risk factors among adult subjects
>18 years of age. The outcomes of interest included blood lipids (total-, HDL-, LDL-cholesterol,
triglycerides, oxidised-LDL), endothelial function (flow-mediated dilation (FMD),
pulse wave velocity (PWV)) and blood pressure (BP) inflammatory factors (CRP, IL-6)
and adhesion molecules (ICAM-1). Random-effects models were used to determine the
pooled effect sizes.
Results
Out of 1189 publications identified, 21 fulfilled inclusion criteria and were meta-analysed.
Overall, interventions supplementing tomato were associated with significant reductions
in LDL-cholesterol (−0.22 mmol/L; p = 0.006), IL-6 (standardised mean difference −0.25; p = 0.03), and improvements in FMD (2.53%; p = 0.01); while lycopene supplementation reduced systolic-BP (−5.66 mmHg; p = 0.002). No other outcome was significantly affected by these interventions.
Conclusions
The available evidence on the effects of tomato products and lycopene supplementation
on CV risk factors supports the view that increasing the intake of these has positive
effects on blood lipids, blood pressure and endothelial function. These results support
the development of promising individualised nutritional strategies involving tomatoes
to tackle CVD.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to AtherosclerosisAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.Lancet. 2015; 386: 2287-2323
- Components of a cardioprotective diet: New insights.Circulation. 2011; 123: 2870-2891
- Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis.J. Nutr. 2013; 143: 818-826
- Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis.Eur. J. Nutr. 2016; 55: 451-459
- Dietary lycopene, tomato-based food products and cardiovascular disease in women.J. Nutr. 2003; 133: 2336-2341
- Relationship of lycopene intake and consumption of tomato products to incident CVD.Br. J. Nutr. 2013; 110: 545-551
- Biological activity of lycopene metabolites: implications for cancer prevention.Nutr. Rev. 2008; 66: 667-683
- Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011].(Cochrane Database Syst Rev)2011
- Systematic Reviews: CRD's Guidance for Undertaking Reviews in Health Care.(York, UK)2009
- Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.Int. J. Surg. 2010; 8: 336-341
- Minder C: bias in meta-analysis detected by a simple, graphical test.Bmj. 1997; 315: 629-634
- Assessing the quality of reports of randomized clinical trials: is blinding necessary?.Control Clin. Trials. 1996; 17: 1-12
- Lycopene dietary intervention: a pilot study in patients with heart failure.J. Cardiovasc. Nurs. 2015; 30: 205-212
- Effects of tomatoes on the lipid profile.Clin. Invest Med. 2006; 29: 298-300
- Tomato-rich (Mediterranean) diet does not modify inflammatory markers.Clin. Investig. Med. Méd. Clin. Exp. 2007; 30: E70-E74
- Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women.Mol. Nutr. Food Res. 2012; 56: 622-631
- Lycopene from two food sources does not affect antioxidant or cholesterol status of middle-aged adults.Nutr. J. 2004; 3: 15
- Effect of tomato consumption on high-density lipoprotein cholesterol level: a randomized, single-blinded, controlled clinical trial.Diabetes Metab. Syndr. Obes. 2013; 6: 263-273
- A dose-response study on the effects of purified lycopene supplementation on biomarkers of oxidative stress.J. Am. Coll. Nutr. 2008; 27: 267-273
- Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: a double-blind, placebo-controlled pilot study.Am. Heart J. 2006; 151 (e101-100.e106): 100
- Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial.Plos One. 2014; : 9
- Tomato juice consumption reduces systemic inflammation in overweight and obese females.Br. J. Nutr. 2013; 109: 2031-2035
- Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men.Atherosclerosis. 2011; 215: 189-195
- The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity.Isr. Med. Assoc. J. 2009; 11: 598-601
- LycoRed as an alternative to hormone replacement therapy in lowering serum lipids and oxidative stress markers: a randomized controlled clinical trial.J. Obstet. Gynaecol. Res. 2006; 32: 299-304
- The effects of natural antioxidants from tomato extract in treated but uncontrolled hypertensive patients.Cardiovasc Drugs Ther. 2009; 23: 145-151
- Dark chocolate or tomato extract for prehypertension: a randomised controlled trial.BMC Complement. Altern. Med. 2009; 9: 22
- Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners.Food Chem. Toxicol. 2014; 69: 231-236
- Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation.Br. J. Nutr. 2007; 98: 1251-1258
- Lack of effects of tomato products on endothelial function in human subjects: results of a randomised, placebo-controlled cross-over study.Br. J. Nutr. 2011; 105: 263-267
- Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: a randomized controlled trial.Am. J. Clin. Nutr. 2012; 95: 1013-1022
- Dietary supplementation with tomato-juice in patients with metabolic syndrome: a suggestion to alleviate detrimental clinical factors.Food Chem. Toxicol. 2014; 74: 9-13
- Effect of supplementation with tomato juice, vitamin E, and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes.Diabetes Care. 2000; 23: 733-738
- Tomato paste supplementation improves endothelial dynamics and reduces plasma total oxidative status in healthy subjects.Nutr. Res. (New York, NY). 2012; 32: 390-394
- Protective effect of lycopene on serum cholesterol and blood pressure: meta-analyses of intervention trials.Maturitas. 2011; 68: 299-310
- Lycopene supplement and blood pressure: an updated meta-analysis of intervention trials.Nutrients. 2013; 5: 3696-3712
- Endothelial function, inflammation, and prognosis in cardiovascular disease.Am. J. Med. 2003; 115: 99s-106s
- Systematic review and meta-analysis of randomised controlled trials testing the effects of vitamin C supplementation on blood lipids.Clin. Nutr. 2016; 35: 626-637
- Effect of lycopene supplementation on oxidative stress: an exploratory systematic review and meta-analysis of randomized controlled trials.J. Med. food. 2013; 16: 361-374
- Seventh report of the Joint national committee on prevention, detection, evaluation, and treatment of high blood pressure.Hypertension. 2003; 42: 1206-1252
- Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients.J. Hypertens. 2011; 29: 1253-1269
- Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins.Lancet. 2005; 366: 1267-1278
- Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis.Int. J. Cardiovasc Imaging. 2010; 26: 631-640
- Non-invasive endothelial function testing and the risk of adverse outcomes: a systematic review and meta-analysis.Eur. Heart J. Cardiovasc Imaging. 2014; 15: 736-746
- Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a systematic review and meta-analysis.J. Am. Heart Assoc. 2015; : 4
Article Info
Publication History
Published online: January 14, 2017
Accepted:
January 12,
2017
Received in revised form:
December 7,
2016
Received:
November 2,
2016
Identification
Copyright
© 2017 Elsevier B.V. All rights reserved.