Advertisement

A 45-SNP genetic risk score is increased in early-onset coronary artery disease but independent of familial disease clustering

      Highlights

      • A common-variant genetic risk score (GRS) is modestly increased in early-onset CAD.
      • Familial clustering of early-onset CAD is common but independent of the GRS.
      • Early-onset CAD familial clustering may better predict CAD severity than the GRS.

      Abstract

      Background and aims

      Common genetic risk variants may contribute to the heritability of early-onset coronary artery disease (CAD). We aimed to investigate the association of a genetic risk score (GRS) with age upon CAD-onset and to test the association between the GRS, familial clustering, and CAD severity in early-onset CAD.

      Methods

      134 early-onset CAD patients (<40 years), 446 late-onset CAD patients (male >55 years/female >65 years), and 89 healthy controls were genotyped for 45 CAD-associated SNPs and a GRS was created. In early-onset CAD patients, family pedigrees with information on 1585 1st and 2nd degree relatives were used to calculate a stratified log-rank family score (SLFS) as a measure of familial clustering.

      Results

      Early-onset patients had a higher mean GRS than late-onset CAD patients (p = 0.02) and healthy controls (p < 0.0001). In the adjusted model, a GRS increase of one SD was associated with 1.2 years (95% CI 0.1–2.2) earlier onset. The GRS was not associated with the SLFS in the regression model (p = 0.41) and did not differ between SLFS tertiles (p = 0.98). The SLFS predicted the number of affected coronary vessels (OR [95% CI] per SD increase in SLFS: 2.0 [1.4–3.0]), whereas the association between the GRS and CAD severity was not statistically significant (OR [95% CI] per SD increase in GRS: 1.3 [0.9–1.9]).

      Conclusions

      The GRS was increased in early-onset CAD patients, but not associated with the SLFS, suggesting that these common genetic variants are of minor importance in familial clustering of early-onset CAD. Furthermore, family pedigree analysis may predict CAD severity more precisely than common variants.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marenberg M.E.
        • Risch N.
        • Berkman L.F.
        • Floderus B.
        • de Faire U.
        Genetic susceptibility to death from coronary heart disease in a study of twins.
        N. Engl. J. Med. 1994; 330: 1041-1046https://doi.org/10.1056/NEJM199404143301503
        • Helgadottir A.
        • Thorleifsson G.
        • Manolescu A.
        • Gretarsdottir S.
        • Blondal T.
        • Jonasdottir A.
        • et al.
        A common variant on chromosome 9p21 affects the risk of myocardial infarction.
        Science. 2007; 316: 1491-1493https://doi.org/10.1126/science.1142842
        • Samani N.J.
        • Erdmann J.
        • Hall A.S.
        • Hengstenberg C.
        • Mangino M.
        • Mayer B.
        • et al.
        Genomewide association analysis of coronary artery disease.
        N. Engl. J. Med. 2007; 357: 443-453https://doi.org/10.1056/NEJMoa072366
        • Voight B.F.
        • Engert J.C.
        • Samani N.J.
        • Erdmann J.
        • Reilly M.P.
        • et al.
        • Myocardial Infarction Genetics Consortium
        Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants.
        Nat. Genet. 2009; 41: 334-341https://doi.org/10.1038/ng.327
        • Erdmann J.
        • Grosshennig A.
        • Braund P.S.
        • König I.R.
        • Hengstenberg C.
        • Hall A.S.
        • et al.
        New susceptibility locus for coronary artery disease on chromosome 3q22.3.
        Nat. Genet. 2009; 41: 280-282https://doi.org/10.1038/ng.307
        • Coronary Artery Disease (C4D)
        • Genetics Consortium,
        A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease.
        Nat. Genet. 2011; 43: 339-344https://doi.org/10.1038/ng.782
        • Schunkert H.
        • König I.R.
        • Kathiresan S.
        • Reilly M.P.
        • Assimes T.L.
        • Hólm H.
        • et al.
        Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease.
        Nat. Genet. 2011; 43: 333-338https://doi.org/10.1038/ng.784
        • Davies R.W.
        • Wells G.A.
        • Stewart A.F.R.
        • Erdmann J.
        • Shah S.H.
        • Ferguson J.F.
        • et al.
        A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex.
        Circ. Cardiovasc. Genet. 2012; 5: 217-225https://doi.org/10.1161/CIRCGENETICS.111.961243
        • Deloukas P.
        • Kanoni S.
        • Willenborg C.
        • Farrall M.
        • Assimes T.L.
        • et al.
        • CARDIoGRAMplusC4D Consortium
        Large-scale association analysis identifies new risk loci for coronary artery disease.
        Nat. Genet. 2013; 45: 25-33https://doi.org/10.1038/ng.2480
        • Davies R.W.
        • Dandona S.
        • Stewart A.F.R.
        • Chen L.
        • Ellis S.G.
        • Tang W.H.W.
        • et al.
        Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies.
        Circ. Cardiovasc. Genet. 2010; 3: 468-474https://doi.org/10.1161/CIRCGENETICS.110.946269
        • Ripatti S.
        • Tikkanen E.
        • Orho-Melander M.
        • Havulinna A.S.
        • Silander K.
        • Sharma A.
        • et al.
        A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses.
        Lancet. 2010; 376: 1393-1400https://doi.org/10.1016/S0140-6736(10)61267-6
        • Hughes M.F.
        • Saarela O.
        • Stritzke J.
        • Kee F.
        • Silander K.
        • Klopp N.
        • et al.
        Genetic markers enhance coronary risk prediction in men: the morgam prospective cohorts.
        PLoS ONE. 2012; 7: e40922https://doi.org/10.1371/journal.pone.0040922
        • Bolton J.L.
        • Stewart M.C.W.
        • Wilson J.F.
        • Anderson N.
        • Price J.F.
        Improvement in prediction of coronary heart disease risk over conventional risk factors using SNPs identified in genome-wide association studies.
        PLoS ONE. 2013; 8: e57310https://doi.org/10.1371/journal.pone.0057310
        • Mega J.L.
        • Stitziel N.O.
        • Smith J.G.
        • Chasman D.I.
        • Caulfield M.J.
        • Devlin J.J.
        • et al.
        Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials.
        Lancet. 2015; https://doi.org/10.1016/S0140-6736(14)61730-X
        • Stitziel N.O.
        • MacRae C.A.
        A clinical approach to inherited premature coronary artery disease.
        Circ. Cardiovasc. Genet. 2014; 7: 558-564https://doi.org/10.1161/CIRCGENETICS.113.000152
        • Williams R.R.
        • Hunt S.C.
        • Heiss G.
        • Province M.A.
        • Bensen J.T.
        • Higgins M.
        • et al.
        Usefulness of cardiovascular family history data for population-based preventive medicine and medical research (the Health Family Tree Study and the NHLBI Family Heart Study).
        Am. J. Cardiol. 2001; 87: 129-135
        • Patel R.S.
        • Sun Y.V.
        • Hartiala J.
        • Veledar E.
        • Su S.
        • Sher S.
        • et al.
        Association of a genetic risk score with prevalent and incident myocardial infarction in subjects undergoing coronary angiography.
        Circ. Cardiovasc. Genet. 2012; 5: 441-449https://doi.org/10.1161/CIRCGENETICS.111.960229
        • Labos C.
        • Wang R.H.L.
        • Pilote L.
        • Bogaty P.
        • Brophy J.M.
        • Engert J.C.
        • et al.
        Traditional risk factors and a Genetic Risk Score are associated with age of first acute coronary syndrome.
        Heart. 2014; 100: 1620-1624https://doi.org/10.1136/heartjnl-2013-305416
        • Hindieh W.
        • Pilote L.
        • Cheema A.
        • Al-Lawati H.
        • Labos C.
        • Dufresne L.
        • et al.
        Association between family history, a genetic risk score, and severity of coronary artery disease in patients with premature acute coronary syndromes.
        Arterioscler. Thromb. Vasc. Biol. 2016; (ATVBAHA.115.306944)https://doi.org/10.1161/ATVBAHA.115.306944
        • Hunt S.C.
        • Williams R.R.
        • Barlow G.K.
        A comparison of positive family history definitions for defining risk of future disease.
        J. Chronic Dis. 1986; 39: 809-821
        • Feng R.
        • McClure L.A.
        • Tiwari H.K.
        • Howard G.
        A new estimate of family disease history providing improved prediction of disease risks.
        Stat. Med. 2009; 28: 1269-1283https://doi.org/10.1002/sim.3526
        • Christiansen M.K.
        • Jensen J.M.
        • Brøndberg A.K.
        • Bøtker H.E.
        • Jensen H.K.
        Cardiovascular risk factor control is insufficient in young patients with coronary artery disease.
        Vhrm. 2016; 12: 219-227https://doi.org/10.2147/VHRM.S106436
        • Larsen S.B.
        • Grove E.L.
        • Neergaard-Petersen S.
        • Würtz M.
        • Hvas A.-M.
        • Kristensen S.D.
        Determinants of reduced antiplatelet effect of aspirin in patients with stable coronary artery disease.
        PLoS ONE. 2015; 10: e0126767https://doi.org/10.1371/journal.pone.0126767
        • Würtz M.
        • Hvas A.-M.
        • Jensen L.O.
        • Kaltoft A.K.
        • Tilsted H.H.
        • Kristensen S.D.
        • et al.
        24-hour antiplatelet effect of aspirin in patients with previous definite stent thrombosis.
        Int. J. Cardiol. 2014; 175: 274-279https://doi.org/10.1016/j.ijcard.2014.05.013
        • McPherson R.
        Genome-wide association studies of cardiovascular disease in european and non-european populations.
        Curr. Genet. Med. Rep. 2014; 2: 1-12https://doi.org/10.1007/s40142-014-0033-y
        • Tada H.
        • Melander O.
        • Louie J.Z.
        • Catanese J.J.
        • Rowland C.M.
        • Devlin J.J.
        • et al.
        Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history.
        Eur. Heart J. 2016; 37: 561-567https://doi.org/10.1093/eurheartj/ehv462
        • Sing C.F.
        • Haviland M.B.
        • Templeton A.R.
        • Zerba K.E.
        • Reilly S.L.
        Biological complexity and strategies for finding DNA variations responsible for inter-individual variation in risk of a common chronic disease, coronary artery disease.
        Ann. Med. 1992; 24: 539-547
        • Madala M.C.
        • Franklin B.A.
        • Chen A.Y.
        • Berman A.D.
        • Roe M.T.
        • Peterson E.D.
        • et al.
        Obesity and age of first non-ST-segment elevation myocardial infarction.
        J. Am. Coll. Cardiol. 2008; 52: 979-985https://doi.org/10.1016/j.jacc.2008.04.067
        • Cole C.B.
        • Nikpay M.
        • Stewart A.F.
        • McPherson R.
        Increased genetic risk for obesity in premature coronary artery disease.
        Eur. J. Hum. Genet. 2015; https://doi.org/10.1038/ejhg.2015.162
        • Khera A.V.
        • Emdin C.A.
        • Drake I.
        • Natarajan P.
        • Bick A.G.
        • Cook N.R.
        • et al.
        Genetic risk, adherence to a healthy lifestyle, and coronary disease.
        N. Engl. J. Med. 2016; (NEJMoa1605086)https://doi.org/10.1056/NEJMoa1605086
        • CARDIoGRAMplusC4D Consortium
        A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease.
        Nat. Genet. 2015; 47: 1121-1130https://doi.org/10.1038/ng.3396
        • Tada H.
        • Won H.-H.
        • Melander O.
        • Yang J.
        • Peloso G.M.
        • Kathiresan S.
        Multiple associated variants increase the heritability explained for plasma lipids and coronary artery disease.
        Circ. Cardiovasc. Genet. 2014; 7: 583-587https://doi.org/10.1161/CIRCGENETICS.113.000420
        • Zeyl C.
        How missing genes interact.
        Nat. Genet. 2007; 39: 440-442https://doi.org/10.1038/ng0407-440
        • Maiwald S.
        • Motazacker M.M.
        • van Capelleveen J.C.
        • Sivapalaratnam S.
        • van der Wal A.C.
        • van der Loos C.
        • et al.
        A rare variant in MCF2L identified using exclusion linkage in a pedigree with premature atherosclerosis.
        Eur. J. Hum. Genet. 2015; https://doi.org/10.1038/ejhg.2015.70
        • Erdmann J.
        • Stark K.
        • Esslinger U.B.
        • Rumpf P.M.
        • Koesling D.
        • de Wit C.
        • et al.
        Dysfunctional nitric oxide signalling increases risk of myocardial infarction.
        Nature. 2014; 504: 432-436https://doi.org/10.1038/nature12722
        • Keramati A.R.
        • Fathzadeh M.
        • Go G.-W.
        • Singh R.
        • Choi M.
        • Faramarzi S.
        • et al.
        A form of the metabolic syndrome associated with mutations in DYRK1B.
        N. Engl. J. Med. 2014; 370: 1909-1919https://doi.org/10.1056/NEJMoa1301824
        • Maiwald S.
        • Sivapalaratnam S.
        • Motazacker M.M.
        • van Capelleveen J.C.
        • Bot I.
        • de Jager S.C.
        • et al.
        Mutation in kera identified by linkage analysis and targeted resequencing in a pedigree with premature atherosclerosis.
        PLoS ONE. 2014; 9 (e98289–10)https://doi.org/10.1371/journal.pone.0098289