Advertisement

Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase

      Highlights

      • CETP inhibitors, anacetrapib and evacetrapib, increased HDL-C and reduced triglyceride levels in hyperlipidemic mice.
      • Anacetrapib reduced cholesterol levels while evacetrapib increased cholesterol efflux and PON-1 activity and reduced ROS.
      • Anacetrapib worsen endothelium-dependent acetylcholine-induced vasorelaxation while evacetrapib showed no effect.
      • CETP inhibition lacks vascular protective effects and compromised vascular function may lead to more cardiovascular events.

      Abstract

      Background and aims

      High-density lipoprotein cholesterol (HDL-C) is inversely related to cardiovascular risk. HDL-C raising ester transfer protein (CETP) inhibitors, are novel therapeutics. We studied the effects of CETP inhibitors anacetrapib and evacetrapib on triglycerides, cholesterol and lipoproteins, cholesterol efflux, paraoxonase activity (PON-1), reactive oxygen species (ROS), and endothelial function in E3L and E3L.CETP mice.

      Methods

      Triglycerides and cholesterol were measured at weeks 5, 14 and 21 in E3L.CETP mice on high cholesterol diet and treated with anacetrapib (3 mg/kg/day), evacetrapib (3 mg/kg/day) or placebo. Cholesterol efflux was assessed ex-vivo in mice treated with CETP inhibitors for 3 weeks on a normal chow diet. Endothelial function was analyzed at week 21 in isolated aortic rings, and serum lipoproteins assessed by fast-performance liquid chromatography.

      Results

      Anacetrapib and evacetrapib increased HDL-C levels (5- and 3.4-fold, resp.) and reduced triglycerides (−39% vs. placebo, p = 0.0174). Total cholesterol levels were reduced only in anacetrapib-treated mice (−32%, p = 0.0386). Cholesterol efflux and PON-1 activity (+45% and +35% vs. control, p < 0.005, resp.) were increased, while aortic ROS production was reduced with evacetrapib (−49% vs. control, p = 0.020). Anacetrapib, but not evacetrapib, impaired endothelium dependent vasorelaxation (p < 0.05). In contrast, no such effects were observed in E3L mice for all parameters tested.

      Conclusions

      Notwithstanding a marked rise in HDL-C, evacetrapib did not improve endothelial function, while anacetrapib impaired it, suggesting that CETP inhibition does not provide vascular protection. Anacetrapib exerts unfavorable endothelial effects beyond CETP inhibition, which may explain the neutral results of large clinical trials in spite of increased HDL-C.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nichols M.
        • Townsend N.
        • Scarborough P.
        • Rayner M.
        Cardiovascular disease in Europe 2014: epidemiological update.
        Eur. Heart J. 2014; 35: 2950-2959
        • Gordon T.
        • Castelli W.P.
        • Hjortland M.C.
        • Kannel W.B.
        • Dawber T.R.
        High density lipoprotein as a protective factor against coronary heart disease. The Framingham study.
        Am. J. Med. 1977; 62: 707-714
        • Barter P.
        • Gotto A.M.
        • LaRosa J.C.
        • Maroni J.
        • Szarek M.
        • Grundy S.M.
        • Kastelein J.J.
        • Bittner V.
        • Fruchart J.C.
        Treating to New Targets I. Hdl cholesterol, very low levels of ldl cholesterol, and cardiovascular events.
        N. Engl. J. Med. 2007; 357: 1301-1310
        • Kuhnast S.
        • Fiocco M.
        • van der Hoorn J.W.
        • Princen H.M.
        • Jukema J.W.
        Innovative pharmaceutical interventions in cardiovascular disease: focusing on the contribution of non-hdl-c/ldl-c-lowering versus hdl-c-raising: a systematic review and meta-analysis of relevant preclinical studies and clinical trials.
        Eur. J. Pharmacol. 2015; 763: 48-63
        • Barter P.J.
        • Caulfield M.
        • Eriksson M.
        • Grundy S.M.
        • Kastelein J.J.
        • Komajda M.
        • Lopez-Sendon J.
        • Mosca L.
        • Tardif J.C.
        • Waters D.D.
        • Shear C.L.
        • Revkin J.H.
        • Buhr K.A.
        • Fisher M.R.
        • Tall A.R.
        • Brewer B.
        • Investigators I
        Effects of torcetrapib in patients at high risk for coronary events.
        N. Engl. J. Med. 2007; 357: 2109-2122
        • Barter P.J.
        • Rye K.A.
        Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk.
        J. Lipid Res. 2012; 53: 1755-1766
        • de Haan W.
        • de Vries-van der Weij J.
        • van der Hoorn J.W.
        • Gautier T.
        • van der Hoogt C.C.
        • Westerterp M.
        • Romijn J.A.
        • Jukema J.W.
        • Havekes L.M.
        • Princen H.M.
        • Rensen P.C.
        Torcetrapib does not reduce atherosclerosis beyond atorvastatin and induces more proinflammatory lesions than atorvastatin.
        Circulation. 2008; 117: 2515-2522
        • Kastelein J.J.
        • van Leuven S.I.
        • Burgess L.
        • Evans G.W.
        • Kuivenhoven J.A.
        • Barter P.J.
        • Revkin J.H.
        • Grobbee D.E.
        • Riley W.A.
        • Shear C.L.
        • Duggan W.T.
        • Bots M.L.
        • Investigators R
        Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia.
        N. Engl. J. Med. 2007; 356: 1620-1630
        • Luscher T.F.
        • Taddei S.
        • Kaski J.C.
        • Jukema J.W.
        • Kallend D.
        • Munzel T.
        • Kastelein J.J.
        • Deanfield J.E.
        • dal V.I.
        Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-vessel randomized clinical trial.
        Eur. Heart J. 2012; 33: 857-865
        • Fayad Z.A.
        • Mani V.
        • Woodward M.
        • Kallend D.
        • Abt M.
        • Burgess T.
        • Fuster V.
        • Ballantyne C.M.
        • Stein E.A.
        • Tardif J.C.
        • Rudd J.H.
        • Farkouh M.E.
        • Tawakol A.
        • dal P.I.
        Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-plaque): a randomised clinical trial.
        Lancet. 2011; 378: 1547-1559
      1. ELi Lilly and Company-Official Site. Newsroom.Lilly.com-Product News Web site, https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130. (Accessed 12 October 2015).

        • Cannon C.P.
        • Shah S.
        • Dansky H.M.
        • Davidson M.
        • Brinton E.A.
        • Gotto A.M.
        • Stepanavage M.
        • Liu S.X.
        • Gibbons P.
        • Ashraf T.B.
        • Zafarino J.
        • Mitchel Y.
        • Barter P.
        Determining the E, Tolerability I. Safety of anacetrapib in patients with or at high risk for coronary heart disease.
        N. Engl. J. Med. 2010; 363: 2406-2415
        • Nicholls S.J.
        • Brewer H.B.
        • Kastelein J.J.
        • Krueger K.A.
        • Wang M.D.
        • Shao M.
        • Hu B.
        • McErlean E.
        • Nissen S.E.
        Effects of the cetp inhibitor evacetrapib administered as monotherapy or in combination with statins on hdl and ldl cholesterol: a randomized controlled trial.
        JAMA. 2011; 306: 2099-2109
        • Simic B.
        • Hermann M.
        • Shaw S.G.
        • Bigler L.
        • Stalder U.
        • Dorries C.
        • Besler C.
        • Luscher T.F.
        • Ruschitzka F.
        Torcetrapib impairs endothelial function in hypertension.
        Eur. Heart J. 2012; 33: 1615-1624
        • Forrest M.J.
        • Bloomfield D.
        • Briscoe R.J.
        • Brown P.N.
        • Cumiskey A.M.
        • Ehrhart J.
        • Hershey J.C.
        • Keller W.J.
        • Ma X.
        • McPherson H.E.
        • Messina E.
        • Peterson L.B.
        • Sharif-Rodriguez W.
        • Siegl P.K.
        • Sinclair P.J.
        • Sparrow C.P.
        • Stevenson A.S.
        • Sun S.Y.
        • Tsai C.
        • Vargas H.
        • Walker 3rd, M.
        • West S.H.
        • White V.
        • Woltmann R.F.
        Torcetrapib-induced blood pressure elevation is independent of cetp inhibition and is accompanied by increased circulating levels of aldosterone.
        Br. J. Pharmacol. 2008; 154: 1465-1473
        • Celermajer D.S.
        • Sorensen K.E.
        • Gooch V.M.
        • Spiegelhalter D.J.
        • Miller O.I.
        • Sullivan I.D.
        • Lloyd J.K.
        • Deanfield J.E.
        Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis.
        Lancet. 1992; 340: 1111-1115
        • Osto E.
        • Matter C.M.
        • Kouroedov A.
        • Malinski T.
        • Bachschmid M.
        • Camici G.G.
        • Kilic U.
        • Stallmach T.
        • Boren J.
        • Iliceto S.
        • Luscher T.F.
        • Cosentino F.
        C-jun n-terminal kinase 2 deficiency protects against hypercholesterolemia-induced endothelial dysfunction and oxidative stress.
        Circulation. 2008; 118: 2073-2080
        • van der Hoorn J.W.
        • de Haan W.
        • Berbee J.F.
        • Havekes L.M.
        • Jukema J.W.
        • Rensen P.C.
        • Princen H.M.
        Niacin increases hdl by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in apoe*3leiden. Cetp mice.
        Arterioscler. Thromb. Vasc. Biol. 2008; 28: 2016-2022
        • Molica F.
        • Burger F.
        • Thomas A.
        • Staub C.
        • Tailleux A.
        • Staels B.
        • Pelli G.
        • Zimmer A.
        • Cravatt B.
        • Matter C.M.
        • Pacher P.
        • Steffens S.
        Endogenous cannabinoid receptor cb1 activation promotes vascular smooth-muscle cell proliferation and neointima formation.
        J. Lipid Res. 2013; 54: 1360-1368
        • Jeyarajah E.J.
        • Cromwell W.C.
        • Otvos J.D.
        Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy.
        Clin. Lab. Med. 2006; 26: 847-870
        • Khera A.V.
        • Cuchel M.
        • de la Llera-Moya M.
        • Rodrigues A.
        • Burke M.F.
        • Jafri K.
        • French B.C.
        • Phillips J.A.
        • Mucksavage M.L.
        • Wilensky R.L.
        • Mohler E.R.
        • Rothblat G.H.
        • Rader D.J.
        Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
        N. Engl. J. Med. 2011; 364: 127-135
        • Osto E.
        • Doytcheva P.
        • Corteville C.
        • Bueter M.
        • Dorig C.
        • Stivala S.
        • Buhmann H.
        • Colin S.
        • Rohrer L.
        • Hasballa R.
        • Tailleux A.
        • Wolfrum C.
        • Tona F.
        • Manz J.
        • Vetter D.
        • Spliethoff K.
        • Vanhoutte P.M.
        • Landmesser U.
        • Pattou F.
        • Staels B.
        • Matter C.M.
        • Lutz T.A.
        • Luscher T.F.
        Rapid and body weight-independent improvement of endothelial and high-density lipoprotein function after roux-en-y gastric bypass: role of glucagon-like peptide-1.
        Circulation. 2015; 131: 871-881
        • Schwartz G.G.
        • Olsson A.G.
        • Abt M.
        • Ballantyne C.M.
        • Barter P.J.
        • Brumm J.
        • Chaitman B.R.
        • Holme I.M.
        • Kallend D.
        • Leiter L.A.
        • Leitersdorf E.
        • McMurray J.J.
        • Mundl H.
        • Nicholls S.J.
        • Shah P.K.
        • Tardif J.C.
        • Wright R.S.
        • dal O.I.
        Effects of dalcetrapib in patients with a recent acute coronary syndrome.
        N. Engl. J. Med. 2012; 367: 2089-2099
        • Bloomfield D.
        • Carlson G.L.
        • Sapre A.
        • Tribble D.
        • McKenney J.M.
        • Littlejohn 3rd, T.W.
        • Sisk C.M.
        • Mitchel Y.
        • Pasternak R.C.
        Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients.
        Am. Heart J. 2009; 157 (e352): 352-360
        • Cao G.
        • Beyer T.P.
        • Zhang Y.
        • Schmidt R.J.
        • Chen Y.Q.
        • Cockerham S.L.
        • Zimmerman K.M.
        • Karathanasis S.K.
        • Cannady E.A.
        • Fields T.
        • Mantlo N.B.
        Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates hdl cholesterol without inducing aldosterone or increasing blood pressure.
        J. Lipid Res. 2011; 52: 2169-2176
        • Suico J.G.
        • Wang M.D.
        • Friedrich S.
        • Cannady E.A.
        • Konkoy C.S.
        • Ruotolo G.
        • Krueger K.A.
        Effects of the cholesteryl ester transfer protein inhibitor evacetrapib on lipoproteins, apolipoproteins and 24-h ambulatory blood pressure in healthy adults.
        J. Pharm. Pharmacol. 2014; 66: 1576-1585
        • Teramoto T.
        • Takeuchi M.
        • Morisaki Y.
        • Ruotolo G.
        • Krueger K.A.
        Efficacy, safety, tolerability, and pharmacokinetic profile of evacetrapib administered as monotherapy or in combination with atorvastatin in japanese patients with dyslipidemia.
        Am. J. Cardiol. 2014; 113: 2021-2029
        • Briand F.
        • Thieblemont Q.
        • Muzotte E.
        • Burr N.
        • Urbain I.
        • Sulpice T.
        • Johns D.G.
        Anacetrapib and dalcetrapib differentially alters hdl metabolism and macrophage-to-feces reverse cholesterol transport at similar levels of cetp inhibition in hamsters.
        Eur. J. Pharmacol. 2014; 740: 135-143
        • Niesor E.J.
        • Magg C.
        • Ogawa N.
        • Okamoto H.
        • von der Mark E.
        • Matile H.
        • Schmid G.
        • Clerc R.G.
        • Chaput E.
        • Blum-Kaelin D.
        • Huber W.
        • Thoma R.
        • Pflieger P.
        • Kakutani M.
        • Takahashi D.
        • Dernick G.
        • Maugeais C.
        Modulating cholesteryl ester transfer protein activity maintains efficient pre-beta-hdl formation and increases reverse cholesterol transport.
        J. Lipid Res. 2010; 51: 3443-3454
        • Arsenault B.J.
        • Despres J.P.
        Hdl cholesterol is not hdl–don't judge the book by its cover.
        Nat. Rev. Cardiol. 2012; 9: 557-558
        • van der Tuin S.J.
        • Kuhnast S.
        • Berbee J.F.
        • Verschuren L.
        • Pieterman E.J.
        • Havekes L.M.
        • van der Hoorn J.W.
        • Rensen P.C.
        • Jukema J.W.
        • Princen H.M.
        • Willems van Dijk K.
        • Wang Y.
        Anacetrapib reduces (v)ldl cholesterol by inhibition of cetp activity and reduction of plasma pcsk9.
        J. Lipid Res. 2015; 56: 2085-2093
        • Krauss R.M.
        • Wojnooski K.
        • Orr J.
        • Geaney J.C.
        • Pinto C.A.
        • Liu Y.
        • Wagner J.A.
        • Luk J.M.
        • Johnson-Levonas A.O.
        • Anderson M.S.
        • Dansky H.M.
        Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the cetp inhibitor anacetrapib.
        J. Lipid Res. 2012; 53: 540-547
        • Millar J.S.
        • Brousseau M.E.
        • Diffenderfer M.R.
        • Barrett P.H.
        • Welty F.K.
        • Faruqi A.
        • Wolfe M.L.
        • Nartsupha C.
        • Digenio A.G.
        • Mancuso J.P.
        • Dolnikowski G.G.
        • Schaefer E.J.
        • Rader D.J.
        Effects of the cholesteryl ester transfer protein inhibitor torcetrapib on apolipoprotein b100 metabolism in humans.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1350-1356
        • Kuhnast S.
        • van der Tuin S.J.
        • van der Hoorn J.W.
        • van Klinken J.B.
        • Simic B.
        • Pieterman E.
        • Havekes L.M.
        • Landmesser U.
        • Luscher T.F.
        • Willems van Dijk K.
        • Rensen P.C.
        • Jukema J.W.
        • Princen H.M.
        Anacetrapib reduces progression of atherosclerosis, mainly by reducing non-hdl-cholesterol, improves lesion stability and adds to the beneficial effects of atorvastatin.
        Eur. Heart J. 2015; 36: 39-48
        • Millar J.S.
        • Reyes-Soffer G.
        • Jumes P.
        • Dunbar R.L.
        • deGoma E.M.
        • Baer A.L.
        • Karmally W.
        • Donovan D.S.
        • Rafeek H.
        • Pollan L.
        • Tohyama J.
        • Johnson-Levonas A.O.
        • Wagner J.A.
        • Holleran S.
        • Obunike J.
        • Liu Y.
        • Ramakrishnan R.
        • Lassman M.E.
        • Gutstein D.E.
        • Ginsberg H.N.
        • Rader D.J.
        Anacetrapib lowers ldl by increasing apob clearance in mildly hypercholesterolemic subjects.
        J. Clin. Invest. 2015; 125: 2510-2522
        • Bhattacharyya T.
        • Nicholls S.J.
        • Topol E.J.
        • Zhang R.
        • Yang X.
        • Schmitt D.
        • Fu X.
        • Shao M.
        • Brennan D.M.
        • Ellis S.G.
        • Brennan M.L.
        • Allayee H.
        • Lusis A.J.
        • Hazen S.L.
        Relationship of paraoxonase 1 (pon1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk.
        JAMA. 2008; 299: 1265-1276
        • Besler C.
        • Heinrich K.
        • Rohrer L.
        • Doerries C.
        • Riwanto M.
        • Shih D.M.
        • Chroni A.
        • Yonekawa K.
        • Stein S.
        • Schaefer N.
        • Mueller M.
        • Akhmedov A.
        • Daniil G.
        • Manes C.
        • Templin C.
        • Wyss C.
        • Maier W.
        • Tanner F.C.
        • Matter C.M.
        • Corti R.
        • Furlong C.
        • Lusis A.J.
        • von Eckardstein A.
        • Fogelman A.M.
        • Luscher T.F.
        • Landmesser U.
        Mechanisms underlying adverse effects of hdl on enos-activating pathways in patients with coronary artery disease.
        J. Clin. Invest. 2011; 121: 2693-2708
        • Rios F.J.
        • Neves K.B.
        • Nguyen Dinh Cat A.
        • Even S.
        • Palacios R.
        • Montezano A.C.
        • Touyz R.M.
        Cholesteryl ester-transfer protein inhibitors stimulate aldosterone biosynthesis in adipocytes through nox-dependent processes.
        J. Pharmacol. Exp. Ther. 2015; 353: 27-34
        • Celermajer D.S.
        • Sorensen K.E.
        • Bull C.
        • Robinson J.
        • Deanfield J.E.
        Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction.
        J. Am. Coll. Cardiol. 1994; 24: 1468-1474
        • Zhang H.
        • Liu J.
        • Qu D.
        • Wang L.
        • Luo J.Y.
        • Lau C.W.
        • Liu P.
        • Gao Z.
        • Tipoe G.L.
        • Lee H.K.
        • Ng C.F.
        • Ma R.C.
        • Yao X.
        • Huang Y.
        Inhibition of mir-200c restores endothelial function in diabetic mice through suppression of cox-2.
        Diabetes. 2016; 65: 1196-1207
        • He M.
        • Liang X.
        • He L.
        • Wen W.
        • Zhao S.
        • Wen L.
        • Liu Y.
        • Shyy J.Y.
        • Yuan Z.
        Endothelial dysfunction in rheumatoid arthritis: the role of monocyte chemotactic protein-1-induced protein.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1384-1391
        • Denys A.
        • Clavel G.
        • Lemeiter D.
        • Schischmanoff O.
        • Boissier M.C.
        • Semerano L.
        Aortic vcam-1: an early marker of vascular inflammation in collagen-induced arthritis.
        J. Cell Mol. Med. 2016; 20: 855-863
        • Williams K.J.
        • Scalia R.
        • Mazany K.D.
        • Rodrigueza W.V.
        • Lefer A.M.
        Rapid restoration of normal endothelial functions in genetically hyperlipidemic mice by a synthetic mediator of reverse lipid transport.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1033-1039
        • Kaul S.
        • Coin B.
        • Hedayiti A.
        • Yano J.
        • Cercek B.
        • Chyu K.Y.
        • Shah P.K.
        Rapid reversal of endothelial dysfunction in hypercholesterolemic apolipoprotein e-null mice by recombinant apolipoprotein a-i(milano)-phospholipid complex.
        J. Am. Coll. Cardiol. 2004; 44: 1311-1319
        • Yuhanna I.S.
        • Zhu Y.
        • Cox B.E.
        • Hahner L.D.
        • Osborne-Lawrence S.
        • Lu P.
        • Marcel Y.L.
        • Anderson R.G.
        • Mendelsohn M.E.
        • Hobbs H.H.
        • Shaul P.W.
        High-density lipoprotein binding to scavenger receptor-bi activates endothelial nitric oxide synthase.
        Nat. Med. 2001; 7: 853-857
        • Terasaka N.
        • Yu S.
        • Yvan-Charvet L.
        • Wang N.
        • Mzhavia N.
        • Langlois R.
        • Pagler T.
        • Li R.
        • Welch C.L.
        • Goldberg I.J.
        • Tall A.R.
        Abcg1 and hdl protect against endothelial dysfunction in mice fed a high-cholesterol diet.
        J. Clin. Invest. 2008; 118: 3701-3713
        • Spieker L.E.
        • Sudano I.
        • Hurlimann D.
        • Lerch P.G.
        • Lang M.G.
        • Binggeli C.
        • Corti R.
        • Ruschitzka F.
        • Luscher T.F.
        • Noll G.
        High-density lipoprotein restores endothelial function in hypercholesterolemic men.
        Circulation. 2002; 105: 1399-1402
        • Riwanto M.
        • Rohrer L.
        • Roschitzki B.
        • Besler C.
        • Mocharla P.
        • Mueller M.
        • Perisa D.
        • Heinrich K.
        • Altwegg L.
        • von Eckardstein A.
        • Luscher T.F.
        • Landmesser U.
        Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
        Circulation. 2013; 127: 891-904
        • Rios F.J.
        • Lopes R.A.
        • Neves K.B.
        • Camargo L.L.
        • Montezano A.C.
        • Touyz R.M.
        Off-target vascular effects of cholesteryl ester transfer protein inhibitors involve redox-sensitive and signal transducer and activator of transcription 3-dependent pathways.
        J. Pharmacol. Exp. Ther. 2016; 357: 415-422
        • Gotto Jr., A.M.
        • Cannon C.P.
        • Li X.S.
        • Vaidya S.
        • Kher U.
        • Brinton E.A.
        • Davidson M.
        • Moon J.E.
        • Shah S.
        • Dansky H.M.
        • Mitchel Y.
        • Barter P.
        • Investigators D.
        Evaluation of lipids, drug concentration, and safety parameters following cessation of treatment with the cholesteryl ester transfer protein inhibitor anacetrapib in patients with or at high risk for coronary heart disease.
        Am. J. Cardiol. 2014; 113: 76-83