Advertisement

ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis

      Highlights

      • Microparticles are produced by a variety of cell lines, including macrophages.
      • The ABCA1 transporter and apoA-I stimulate microparticle release from cells.
      • Microparticles contribute approximately 30% of cell cholesterol efflux in peripheral cells.
      • Microparticles show size heterogeneity and contain flotillin and CD63 markers of exosomes.

      Abstract

      Background and aims

      Micro-particles (MP) are secreted by various cells. Their biological roles in health and in disease remain unknown. Here we describe formation of MP in the process of ABCA1-dependent cholesterol efflux in different cell types.

      Methods

      The ATP-binding cassette transporter, subfamily A, member 1 (ABCA1) is the rate-limiting step in the biogenesis of high-density lipoproteins (HDL). We have found that ABCA1 and apoA-I contribute to the formation of MP. Using cell-based systems with overexpression and selective inactivation of ABCA1, pharmacological blockade and modulation of membrane cholesterol content, we characterized MP release from various cell lines. We studied MP release in BHK cells stably expressing ABCA1 under mifepristone control, human THP-1 macrophages and HepG2 cells without, or with incubation with human apoA-I.

      Results

      ABCA1 mediates the production of MPs containing cholesterol. This was also confirmed in primary human monocyte-derived macrophages (MDMs). Adding apoA-I markedly increases MP release from cells. Inhibition of ABCA1 with probucol or decreasing plasma membrane cholesterol with methyl-β cyclodextrin (CDX) markedly reduced MP release and nascent HDL formation. MPs do not contain apoA-I, but contain flotilin-2, a marker of plasma membrane, and CD63, an exosome marker. MPs exhibit considerable size heterogeneity (50–250 nm).

      Conclusions

      We show that MPs are lipoprotein-sized structures created by the ABCA1 transporter, and contribute approximately 30% of ABCA1-and apoA-I mediated cholesterol efflux. In addition, we found that MPs release from cells consists, in part, of exosomes and depends on the same pathway used for HDL biogenesis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fond A.M.
        • Lee C.S.
        • Schulman I.G.
        • Kiss R.S.
        • Ravichandran K.S.
        Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1.
        J. Clin. investigation. 2015; 125: 2748-2758
        • Tang C.
        • Houston B.A.
        • Storey C.
        • LeBoeuf R.C.
        Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages.
        J. lipid Res. 2016; 57: 848-857
        • Nandi S.
        • Ma L.
        • Denis M.
        • Karwatsky J.
        • Li Z.
        • et al.
        ABCA1-mediated cholesterol efflux generates microparticles in addition to HDL through processes governed by membrane rigidity.
        J. lipid Res. 2009; 50: 456-466
        • Cocucci E.
        • Meldolesi J.
        Ectosomes and exosomes: shedding the confusion between extracellular vesicles.
        Trends Cell Biol. 2015; 25: 364-372
        • Diehl P.
        • Fricke A.
        • Sander L.
        • Stamm J.
        • Bassler N.
        • et al.
        Microparticles: major transport vehicles for distinct microRNAs in circulation.
        Cardiovasc. Res. 2012; 93: 633-644
        • McGinn C.M.
        • MacDonnell B.F.
        • Shan C.X.
        • Wallace R.
        • Cummins P.M.
        • et al.
        Microparticles: a pivotal nexus in vascular homeostasis and disease.
        Curr. Clin. Pharmacol. 2016; 11: 28-42
        • Kesimer M.
        • Scull M.
        • Brighton B.
        • DeMaria G.
        • Burns K.
        • et al.
        Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense, FASEB journal.
        official Publ. Fed. Am. Soc. Exp. Biol. 2009; 23: 1858-1868
        • Ferguson S.W.
        • Nguyen J.
        Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity.
        J. Control Release. 2016; 228: 179-190
        • Kowal J.
        • Arras G.
        • Colombo M.
        • Jouve M.
        • Morath J.P.
        • et al.
        Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.
        Proc. Natl. Acad. Sci. U. S. A. 2016; 113: E968-E977
        • Montermini L.
        • Meehan B.
        • Garnier D.
        • Lee W.J.
        • Lee T.H.
        • et al.
        Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content.
        J. Biol. Chem. 2015; 290: 24534-24546
        • Jaiswal R.
        • Gong J.
        • Sambasivam S.
        • Combes V.
        • Mathys J.M.
        • et al.
        Microparticle-associated nucleic acids mediate trait dominance in cancer, FASEB journal.
        official Publ. Fed. Am. Soc. Exp. Biol. 2012; 26: 420-429
        • Freyssinet J.M.
        • Toti F.
        Formation of procoagulant microparticles and properties.
        Thrombosis research. 2010; 125: S46-S48
        • Mallat Z.
        • Hugel B.
        • Ohan J.
        • Leseche G.
        • Freyssinet J.M.
        • et al.
        Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity.
        Circulation. 1999; 99: 348-353
        • Iatan I.
        • Bailey D.
        • Ruel I.
        • Hafiane A.
        • Campbell S.
        • et al.
        Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis.
        J. lipid Res. 2011; 52: 2043-2055
        • Sorci-Thomas M.G.
        • Owen J.S.
        • Fulp B.
        • Bhat S.
        • Zhu X.
        • et al.
        Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers.
        J. lipid Res. 2012; 53: 1890-1909
        • Pollard R.D.
        • Fulp B.
        • Sorci-Thomas M.G.
        • Thomas M.J.
        HDL biogenesis: defining the domains involved in human apolipoprotein A-I lipidation.
        Biochemistry. 2016; 55: 4971-4981
        • Duong P.T.
        • Collins H.L.
        • Nickel M.
        • Lund-Katz S.
        • Rothblat G.H.
        • et al.
        Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I.
        J. lipid Res. 2006; 47: 832-843
        • Barteneva N.S.
        • Fasler-Kan E.
        • Bernimoulin M.
        • Stern J.N.
        • Ponomarev E.D.
        • et al.
        Circulating microparticles: square the circle.
        BMC Cell Biol. 2013; 14: 23
        • Ma L.
        • Dong F.
        • Denis M.
        • Feng Y.
        • Wang M.D.
        • et al.
        Ht31, a protein kinase A anchoring inhibitor, induces robust cholesterol efflux and reverses macrophage foam cell formation through ATP-binding cassette transporter A1.
        J. Biol. Chem. 2011; 286: 3370-3378
        • Strauss K.
        • Goebel C.
        • Runz H.
        • Mobius W.
        • Weiss S.
        • et al.
        Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease.
        J. Biol. Chem. 2010; 285: 26279-26288
        • Ting-Beall H.P.
        Interactions of uranyl ions with lipid bilayer membranes.
        J. Microsc. 1980; 118: 221-227
        • Sahoo S.
        • Klychko E.
        • Thorne T.
        • Misener S.
        • Schultz K.M.
        • et al.
        Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity.
        Circulation Res. 2011; 109: 724-728
        • Wu C.A.
        • Tsujita M.
        • Hayashi M.
        • Yokoyama S.
        Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation.
        J. Biol. Chem. 2004; 279: 30168-30174
        • Tsujita M.
        • Wu C.A.
        • Abe-Dohmae S.
        • Usui S.
        • Okazaki M.
        • et al.
        On the hepatic mechanism of HDL assembly by the ABCA1/apoA-I pathway.
        J. lipid Res. 2005; 46: 154-162
        • Wang N.
        • Silver D.L.
        • Thiele C.
        • Tall A.R.
        ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein.
        J. Biol. Chem. 2001; 276: 23742-23747
        • Omura R.
        • Nagao K.
        • Kobayashi N.
        • Ueda K.
        • Saito H.
        Direct detection of ABCA1-dependent HDL formation based on lipidation-induced hydrophobicity change in apoA-I.
        J. lipid Res. 2014; 55: 2423-2431
      1. C. Thery, S. Amigorena, G. Raposo, A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Current protocols in cell biology/editorial board, Juan S. Bonifacino... [et al.], Chapter 3 (2006) Unit 3 22.

        • Combes V.
        • Coltel N.
        • Alibert M.
        • van Eck M.
        • Raymond C.
        • et al.
        ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology.
        Am. J. pathology. 2005; 166: 295-302
        • Groeneweg M.
        • Kanters E.
        • Vergouwe M.N.
        • Duerink H.
        • Kraal G.
        • et al.
        Lipopolysaccharide-induced gene expression in murine macrophages is enhanced by prior exposure to oxLDL.
        J. lipid Res. 2006; 47: 2259-2267
        • Marco A.
        • Brocal C.
        • Marco P.
        Measurement of procoagulant activity of microparticles in plasma: feasibility of new functional assays.
        Thromb. Res. 2014; 134: 1363-1364
        • Piccin A.
        • Murphy W.G.
        • Smith O.P.
        Circulating microparticles: pathophysiology and clinical implications.
        Blood Rev. 2007; 21: 157-171
        • Buendia P.
        • Montes de Oca A.
        • Madueno J.A.
        • Merino A.
        • Martin-Malo A.
        • et al.
        Endothelial microparticles mediate inflammation-induced vascular calcification.
        FASEB J. 2015; 29: 173-181
        • Martinez M.C.
        • Tual-Chalot S.
        • Leonetti D.
        • Andriantsitohaina R.
        Microparticles: targets and tools in cardiovascular disease.
        Trends Pharmacol. Sci. 2011; 32: 659-665
        • Nielsen C.T.
        Circulating microparticles in systemic lupus erythematosus.
        Dan. Med. J. 2012; 59 (B4548)
      2. K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science (New York, N.Y.), 319 (2008) 1244–1247.

        • Glebov O.O.
        • Bright N.A.
        • Nichols B.J.
        Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells.
        Nat. Cell Biol. 2006; 8: 46-54