Advertisement

The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms

  • Azza Ramadan
    Affiliations
    Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada

    Institute of Medical Science, University of Toronto, ON, Canada
    Search for articles by this author
  • Mohammed Al-Omran
    Affiliations
    Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada

    Institute of Medical Science, University of Toronto, ON, Canada

    Department of Surgery, University of Toronto, ON, Canada

    Department of Surgery, King Saud University, Riyadh, Saudi Arabia
    Search for articles by this author
  • Subodh Verma
    Correspondence
    Corresponding author. Division of Cardiac Surgery, St. Michael's Hospital, Suite 8-003, Bond Wing, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
    Affiliations
    Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada

    Institute of Medical Science, University of Toronto, ON, Canada

    Department of Surgery, University of Toronto, ON, Canada
    Search for articles by this author

      Highlights

      • Multiple autophagy-related genes are upregulated in human abdominal aortic aneurysms (AAA).
      • Several AAA-related factors are autophagy inducers.
      • Loss of macrophage and smooth muscle autophagy could exacerbate AAA.
      • Endothelial autophagy may have a dual role in AAA pathogenesis.

      Abstract

      Abdominal aortic aneurysms (AAA) are a significant cause of worldwide mortality and morbidity. While the histopathological characteristics of AAA are well documented, the cellular and molecular mechanisms involved in the pathogenesis of AAA are not entirely understood. Autophagy is a highly conserved basal cellular process in eukaryotic cells that involves the turnover of organelles and proteins. It is also activated as an adaptive response to stressful conditions to promote cell survival. While autophagy typically promotes pro-survival processes, it can sometimes lead to cellular demise. Preclinical studies have revealed autophagy to be a protective mechanism in certain vascular diseases with several autophagy-related genes reported to be markedly upregulated in human aneurysmal tissue. The role autophagy plays in the pathogenesis of AAA, however, remains poorly defined. In this review, we discuss the putative role of autophagy in AAA by reviewing several in vitro and in vivo studies that address the functional significance of autophagy in cells that are involved in the pathophysiology of AAA, amongst which are macrophages, smooth muscle and endothelial cells.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aggarwal S.
        • Qamar A.
        • Sharma V.
        • et al.
        Abdominal aortic aneurysm: a comprehensive review.
        Exp. Clin. Cardiol. 2011; 16: 11-15
        • Bengtsson H.
        • Bergqvist D.
        Ruptured abdominal aortic aneurysm: a population-based study.
        J. Vasc. Surg. 1993; 18: 74-80
        • Heller J.A.
        • Weinberg A.
        • Arons R.
        • et al.
        Two decades of abdominal aortic aneurysm repair: have we made any progress?.
        J. Vasc. Surg. 2000; 32: 1091-1100
        • Cowan Jr., J.A.
        • Dimick J.B.
        • Henke P.K.
        • et al.
        Epidemiology of aortic aneurysm repair in the United States from 1993 to 2003.
        Ann. N. Y. Acad. Sci. 2006; 1085: 1-10
        • Dillavou E.D.
        • Muluk S.C.
        • Makaroun M.S.
        A decade of change in abdominal aortic aneurysm repair in the United States: have we improved outcomes equally between men and women?.
        J. Vasc. Surg. 2006; 43 (discussion 238): 230-238
        • Giles K.A.
        • Pomposelli F.
        • Hamdan A.
        • et al.
        Decrease in total aneurysm-related deaths in the era of endovascular aneurysm repair.
        J. Vasc. Surg. 2009; 49 (discussion 550–541): 543-550
        • Freestone T.
        • Turner R.J.
        • Coady A.
        • et al.
        Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1145-1151
        • Saraff K.
        • Babamusta F.
        • Cassis L.A.
        • et al.
        Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 1621-1626
        • Rowe V.L.
        • Stevens S.L.
        • Reddick T.T.
        • et al.
        Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas.
        J. Vasc. Surg. 2000; 31: 567-576
        • Lopez-Candales A.
        • Holmes D.R.
        • Liao S.
        • et al.
        Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms.
        Am. J. Pathol. 1997; 150: 993-1007
        • Henderson E.L.
        • Geng Y.J.
        • Sukhova G.K.
        • et al.
        Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms.
        Circulation. 1999; 99: 96-104
        • Yamanouchi D.
        • Morgan S.
        • Kato K.
        • et al.
        Effects of caspase inhibitor on angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 702-707
        • Liao S.
        • Curci J.A.
        • Kelley B.J.
        • et al.
        Accelerated replicative senescence of medial smooth muscle cells derived from abdominal aortic aneurysms compared to the adjacent inferior mesenteric artery.
        J. Surg. Res. 2000; 92: 85-95
        • Riches K.
        • Angelini T.G.
        • Mudhar G.S.
        • et al.
        Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm.
        J. Transl. Med. 2013; 11: 208
        • Cafueri G.
        • Parodi F.
        • Pistorio A.
        • et al.
        Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition.
        PLoS One. 2012; 7: e35312
        • Siasos G.
        • Mourouzis K.
        • Oikonomou E.
        • et al.
        The role of endothelial dysfunction in aortic aneurysms.
        Curr. Pharm. Des. 2015; 21: 4016-4034
        • Franck G.
        • Dai J.
        • Fifre A.
        • et al.
        Reestablishment of the endothelial lining by endothelial cell therapy stabilizes experimental abdominal aortic aneurysms.
        Circulation. 2013; 127: 1877-1887
        • Hellenthal F.A.
        • Buurman W.A.
        • Wodzig W.K.
        • et al.
        Biomarkers of AAA progression. Part 1: extracellular matrix degeneration.
        Nat. Rev. Cardiol. 2009; 6: 464-474
        • McCormick M.L.
        • Gavrila D.
        • Weintraub N.L.
        Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 461-469
        • Ravikumar B.
        • Sarkar S.
        • Davies J.E.
        • et al.
        Regulation of mammalian autophagy in physiology and pathophysiology.
        Physiol. Rev. 2010; 90: 1383-1435
        • Maiuri M.C.
        • Zalckvar E.
        • Kimchi A.
        • et al.
        Self-eating and self-killing: crosstalk between autophagy and apoptosis.
        Nat. Rev. Mol. Cell Biol. 2007; 8: 741-752
        • Lee J.
        • Giordano S.
        • Zhang J.
        Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling.
        Biochem. J. 2012; 441: 523-540
        • Rashid H.O.
        • Yadav R.K.
        • Kim H.R.
        • et al.
        ER stress: autophagy induction, inhibition and selection.
        Autophagy. 2015; 11: 1956-1977
        • Levine B.
        • Mizushima N.
        • Virgin H.W.
        Autophagy in immunity and inflammation.
        Nature. 2011; 469: 323-335
        • Marino G.
        • Niso-Santano M.
        • Baehrecke E.H.
        • et al.
        Self-consumption: the interplay of autophagy and apoptosis.
        Nat. Rev. Mol. Cell Biol. 2014; 15: 81-94
        • Liu Y.
        • Levine B.
        Autosis and autophagic cell death: the dark side of autophagy.
        Cell Death Differ. 2015; 22: 367-376
        • Yang Z.
        • Klionsky D.J.
        Mammalian autophagy: core molecular machinery and signaling regulation.
        Curr. Opin. Cell Biol. 2010; 22: 124-131
        • Klionsky D.J.
        • Abdelmohsen K.
        • Abe A.
        • et al.
        third ed. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy. vol. 12. Autophagy, 2016: 1-222
        • Madeo F.
        • Zimmermann A.
        • Maiuri M.C.
        • et al.
        Essential role for autophagy in life span extension.
        J. Clin. Invest. 2015; 125: 85-93
        • Rubinsztein D.C.
        • Marino G.
        • Kroemer G.
        Autophagy and aging.
        Cell. 2011; 146: 682-695
        • White E.
        The role for autophagy in cancer.
        J. Clin. Invest. 2015; 125: 42-46
        • Frake R.A.
        • Ricketts T.
        • Menzies F.M.
        • et al.
        Autophagy and neurodegeneration.
        J. Clin. Invest. 2015; 125: 65-74
        • Deretic V.
        • Kimura T.
        • Timmins G.
        • et al.
        Immunologic manifestations of autophagy.
        J. Clin. Invest. 2015; 125: 75-84
        • De Meyer G.R.
        • Grootaert M.O.
        • Michiels C.F.
        • et al.
        Autophagy in vascular disease.
        Circ. Res. 2015; 116: 468-479
        • Grootaert M.O.
        • da Costa Martins P.A.
        • Bitsch N.
        • et al.
        Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis.
        Autophagy. 2015; 11: 2014-2032
        • Zheng Y.H.
        • Tian C.
        • Meng Y.
        • et al.
        Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells.
        J. Cell Physiol. 2012; 227: 127-135
        • Giusti B.
        • Rossi L.
        • Lapini I.
        • et al.
        Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm.
        Eur. J. Vasc. Endovasc. Surg. 2009; 38: 104-112
        • Lawrence D.M.
        • Singh R.S.
        • Franklin D.P.
        • et al.
        Rapamycin suppresses experimental aortic aneurysm growth.
        J. Vasc. Surg. 2004; 40: 334-338
        • Rouer M.
        • Xu B.H.
        • Xuan H.J.
        • et al.
        Rapamycin limits the growth of established experimental abdominal aortic aneurysms.
        Eur. J. Vasc. Endovasc. Surg. 2014; 47: 493-500
        • Moran C.S.
        • Jose R.J.
        • Moxon J.V.
        • et al.
        Everolimus limits aortic aneurysm in the apolipoprotein E-deficient mouse by downregulating C-C chemokine receptor 2 positive monocytes.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 814-821
        • Kaneko H.
        • Anzai T.
        • Morisawa M.
        • et al.
        Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization.
        Atherosclerosis. 2011; 217: 350-357
        • Daugherty A.
        • Manning M.W.
        • Cassis L.A.
        Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice.
        J. Clin. Invest. 2000; 105: 1605-1612
        • Daugherty A.
        • Cassis L.
        Chronic angiotensin II infusion promotes atherogenesis in low density lipoprotein receptor -/- mice.
        Ann. N. Y. Acad. Sci. 1999; 892: 108-118
        • Lu H.
        • Rateri D.L.
        • Cassis L.A.
        • et al.
        The role of the renin-angiotensin system in aortic aneurysmal diseases.
        Curr. Hypertens. Rep. 2008; 10: 99-106
        • Pan L.
        • Li Y.
        • Jia L.
        • et al.
        Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation.
        PLoS One. 2012; 7: e35315
        • Zhao W.
        • Li Y.
        • Jia L.
        • et al.
        Atg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin II.
        Free Radic. Biol. Med. 2014; 69: 108-115
        • Lu Y.
        • Li S.
        • Wu H.
        • et al.
        Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells.
        Int. J. Mol. Med. 2015; 36: 1223-1232
        • Shan H.
        • Guo D.
        • Li X.
        • et al.
        From autophagy to senescence and apoptosis in Angiotensin II-treated vascular endothelial cells.
        APMIS. 2014; 122: 985-992
        • He C.
        • Zhu H.
        • Zhang W.
        • et al.
        7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B.
        Am. J. Pathol. 2013; 183: 626-637
        • Scherz-Shouval R.
        • Shvets E.
        • Fass E.
        • et al.
        Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4.
        EMBO J. 2007; 26: 1749-1760
        • Shafique E.
        • Choy W.C.
        • Liu Y.
        • et al.
        Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK.
        Aging (Albany NY). 2013; 5: 515-530
        • Miller Jr., F.J.
        • Sharp W.J.
        • Fang X.
        • et al.
        Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 560-565
        • Zhang C.
        • van der Voort D.
        • Shi H.
        • et al.
        Matricellular protein CCN3 mitigates abdominal aortic aneurysm.
        J. Clin. Invest. 2016; 126: 2012
        • Ayala A.
        • Munoz M.F.
        • Arguelles S.
        Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.
        Oxid. Med. Cell Longev. 2014; 2014: 360438
        • Hill B.G.
        • Haberzettl P.
        • Ahmed Y.
        • et al.
        Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells.
        Biochem. J. 2008; 410: 525-534
        • Haberzettl P.
        • Hill B.G.
        Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response.
        Redox Biol. 2013; 1: 56-64
        • Lu H.
        • Rateri D.L.
        • Bruemmer D.
        • et al.
        Novel mechanisms of abdominal aortic aneurysms.
        Curr. Atheroscler. Rep. 2012; 14: 402-412
        • Boyle J.J.
        • Weissberg P.L.
        • Bennett M.R.
        Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 1553-1558
        • Jia G.
        • Cheng G.
        • Gangahar D.M.
        • et al.
        Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells.
        Immunol. Cell Biol. 2006; 84: 448-454
        • Bruemmer D.
        • Collins A.R.
        • Noh G.
        • et al.
        Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice.
        J. Clin. Invest. 2003; 112: 1318-1331
        • Golledge J.
        • Muller J.
        • Shephard N.
        • et al.
        Association between osteopontin and human abdominal aortic aneurysm.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 655-660
        • Vorp D.A.
        • Lee P.C.
        • Wang D.H.
        • et al.
        Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening.
        J. Vasc. Surg. 2001; 34: 291-299
        • Erdozain O.J.
        • Pegrum S.
        • Winrow V.R.
        • et al.
        Hypoxia in abdominal aortic aneurysm supports a role for HIF-1alpha and Ets-1 as drivers of matrix metalloproteinase upregulation in human aortic smooth muscle cells.
        J. Vasc. Res. 2011; 48: 163-170
        • Tanaka H.
        • Zaima N.
        • Sasaki T.
        • et al.
        Adventitial vasa vasorum arteriosclerosis in abdominal aortic aneurysm.
        PLoS One. 2013; 8: e57398
        • Ibe J.C.
        • Zhou Q.
        • Chen T.
        • et al.
        Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension.
        Am. J. Respir. Cell Mol. Biol. 2013; 49: 609-618
        • Zhang H.
        • Gong Y.
        • Wang Z.
        • et al.
        Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia.
        J. Cell Mol. Med. 2014; 18: 542-553
        • Chatzizisis Y.S.
        • Coskun A.U.
        • Jonas M.
        • et al.
        Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior.
        J. Am. Coll. Cardiol. 2007; 49: 2379-2393
        • Jeon H.
        • Boo Y.C.
        Laminar shear stress enhances endothelial cell survival through a NADPH oxidase 2-dependent mechanism.
        Biochem. Biophys. Res. Commun. 2013; 430: 460-465
        • Boyd A.J.
        • Kuhn D.C.
        • Lozowy R.J.
        • et al.
        Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
        J. Vasc. Surg. 2016; 63: 1613-1619
        • Yao P.
        • Zhao H.
        • Mo W.
        • et al.
        Laminar shear stress promotes vascular endothelial cell autophagy through upregulation with Rab4.
        DNA Cell Biol. 2016; 35: 118-123
        • Liu J.
        • Bi X.
        • Chen T.
        • et al.
        Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression.
        Cell Death Dis. 2015; 6: e1827
        • Li R.
        • Jen N.
        • Wu L.
        • et al.
        Disturbed flow induces autophagy, but impairs autophagic flux to perturb mitochondrial homeostasis.
        Antioxid. Redox Signal. 2015; 23: 1207-1219
        • Bharath L.P.
        • Mueller R.
        • Li Y.
        • et al.
        Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability.
        Can. J. Physiol. Pharmacol. 2014; 92: 605-612
        • Guo F.
        • Li X.
        • Peng J.
        • et al.
        Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system.
        Ann. Biomed. Eng. 2014; 42: 1978-1988
        • Razani B.
        • Feng C.
        • Coleman T.
        • et al.
        Autophagy links inflammasomes to atherosclerotic progression.
        Cell Metab. 2012; 15: 534-544
        • Guo H.
        • Callaway J.B.
        • Ting J.P.
        Inflammasomes: mechanism of action, role in disease, and therapeutics.
        Nat. Med. 2015; 21: 677-687
        • Usui F.
        • Shirasuna K.
        • Kimura H.
        • et al.
        Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 127-136
        • Nussenzweig S.C.
        • Verma S.
        • Finkel T.
        The role of autophagy in vascular biology.
        Circ. Res. 2015; 116: 480-488
        • Ouimet M.
        • Franklin V.
        • Mak E.
        • et al.
        Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase.
        Cell Metab. 2011; 13: 655-667
        • Zimmer S.
        • Grebe A.
        • Bakke S.S.
        • et al.
        Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming.
        Sci. Transl. Med. 2016; 8 (333ra350)
        • Tanaskovic I.
        • Mladenovic-Mihailovic A.
        • Usaj-Knezevic S.
        • et al.
        Histochemical and immunohistochemical analysis of ruptured atherosclerotic abdominal aortic aneurysm wall.
        Vojnosanit. Pregl. 2010; 67: 959-964
        • Liao X.
        • Sluimer J.C.
        • Wang Y.
        • et al.
        Macrophage autophagy plays a protective role in advanced atherosclerosis.
        Cell Metab. 2012; 15: 545-553
        • Sinha I.
        • Sinha-Hikim A.P.
        • Hannawa K.K.
        • et al.
        Mitochondrial-dependent apoptosis in experimental rodent abdominal aortic aneurysms.
        Surgery. 2005; 138: 806-811
        • Kazi M.
        • Thyberg J.
        • Religa P.
        • et al.
        Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall.
        J. Vasc. Surg. 2003; 38: 1283-1292
        • Koga H.
        • Kaushik S.
        • Cuervo A.M.
        Altered lipid content inhibits autophagic vesicular fusion.
        FASEB J. 2010; 24: 3052-3065
        • Kunieda T.
        • Minamino T.
        • Nishi J.
        • et al.
        Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway.
        Circulation. 2006; 114: 953-960
        • Piechota-Polanczyk A.
        • Jozkowicz A.
        • Nowak W.
        • et al.
        The abdominal aortic aneurysm and intraluminal thrombus: current concepts of development and treatment.
        Front. Cardiovasc Med. 2015; 2: 19
        • Arzani A.
        • Suh G.Y.
        • Dalman R.L.
        • et al.
        A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms.
        Am. J. Physiol. Heart Circ. Physiol. 2014; 307: H1786-H1795
        • Tong J.
        • Holzapfel G.A.
        Structure, Mechanics, and histology of intraluminal thrombi in abdominal aortic aneurysms.
        Ann. Biomed. Eng. 2015; 43: 1488-1501
        • Yau J.Y.
        • Hou Y.
        • Lei X.
        • et al.
        A Novel Role of Endothelial Autophagy in the Regulation of Thrombosis in Vivo.
        American Heart Association, Orlando, FL, United States, Circulation2015: A10824
        • Chu A.J.
        Tissue factor, blood coagulation, and beyond: an overview.
        Int. J. Inflam. 2011; 2011: 367284
        • Skora J.
        • Dawiskiba T.
        • Zaleska P.
        • et al.
        Prognostic value of tissue factor in patients with abdominal aortic and iliac arterial aneurysms - preliminary study.
        Arch. Med. Sci. 2013; 9: 1071-1077
        • Hobbs S.D.
        • Claridge M.W.
        • Quick C.R.
        • et al.
        LDL cholesterol is associated with small abdominal aortic aneurysms.
        Eur. J. Vasc. Endovasc. Surg. 2003; 26: 618-622
        • Bradley D.T.
        • Hughes A.E.
        • Badger S.A.
        • et al.
        A variant in LDLR is associated with abdominal aortic aneurysm.
        Circ. Cardiovasc Genet. 2013; 6: 498-504
        • Daugherty A.
        • Cassis L.A.
        Mouse models of abdominal aortic aneurysms.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 429-434
        • Torisu K.
        • Singh K.K.
        • Torisu T.
        • et al.
        Intact endothelial autophagy is required to maintain vascular lipid homeostasis.
        Aging Cell. 2016; 15: 187-191
        • Kovacic J.C.
        • Moreno P.
        • Nabel E.G.
        • et al.
        Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly.
        Circulation. 2011; 123: 1900-1910
        • LaRocca T.J.
        • Henson G.D.
        • Thorburn A.
        • et al.
        Translational evidence that impaired autophagy contributes to arterial ageing.
        J. Physiol. 2012; 590: 3305-3316
        • LaRocca T.J.
        • Gioscia-Ryan R.A.
        • Hearon Jr., C.M.
        • et al.
        The autophagy enhancer spermidine reverses arterial aging.
        Mech. Ageing Dev. 2013; 134: 314-320
        • Ramadan A.
        • Wheatcroft M.D.
        • Quan A.
        • et al.
        Effects of long-term chloroquine administration on the natural history of aortic aneurysms in mice.
        Can. J. Physiol. Pharmacol. 2015; 93: 641-648