Advertisement

An anti-αVβ3 antibody inhibits coronary artery atherosclerosis in diabetic pigs

      Highlights

      • Insulin deficient diabetic pigs fed a high cholesterol diet for 20 weeks developed extensive coronary atherosclerosis.
      • Hyperglycemia stimulates secretion of extracellular matrix proteins that bind αVβ3. This activates αVβ3 in diabetic animals.
      • Injection of an antibody against a specific epitope in the β subunit of αVβ3 inhibited atherosclerotic lesion development.
      • The antibody also inhibited macrophage infiltration into lesions as well as MAP kinase activation and cell proliferation.
      • Inhibition of αVβ3 offers a potential therapy for inhibition of atherosclerotic lesion development in patients with diabetes.

      Abstract

      Background and aims

      Diabetes is a major risk factor for the development of atherosclerosis. Hyperglycemia stimulates vascular smooth muscle cells (VSMC) to secrete ligands that bind to the αVβ3 integrin, a receptor that regulates VSMC proliferation and migration. This study determined whether an antibody that had previously been shown to block αVβ3 activation and to inhibit VSMC proliferation and migration in vitro, inhibited the development of atherosclerosis in diabetic pigs.

      Methods

      Twenty diabetic pigs were maintained on a high fat diet for 22 weeks. Ten received injections of anti-β3 F(ab)2 and ten received control F(ab)2 for 18 weeks.

      Results

      The active antibody group showed reduction of atherosclerosis of 91 ± 9% in the left main, 71 ± 11%, in left anterior descending, 80 ± 10.2% in circumflex, and 76 ± 25% in right coronary artery, (p < 0.01 compared to lesions areas from corresponding control treated arteries). There were significant reductions in both cell number and extracellular matrix. Histologic analysis showed neointimal hyperplasia with macrophage infiltration, calcifications and cholesterol clefts. Antibody treatment significantly reduced number of macrophages contained within lesions, suggesting that this change contributed to the decrease in lesion cellularity. Analysis of the biochemical changes within the femoral arteries that received the active antibody showed a 46 ± 12% (p < 0.05) reduction in the tyrosine phosphorylation of the β3 subunit of αVβ3 and a 40 ± 14% (p < 0.05) reduction in MAP kinase activation.

      Conclusions

      Blocking ligand binding to the αVβ3 integrin inhibits its activation and attenuates increased VSMC proliferation that is induced by chronic hyperglycemia. These changes result in significant decreases in atherosclerotic lesion size in the coronary arteries. The results suggest that this approach may have efficacy in treating the proliferative phase of atherosclerosis in patients with diabetes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ryden L.
        • Standle E.
        • Bartnik M.
        • et al.
        Guidelines on diabetes: pre-diabetes, and cardiovascular diseases: executive summary. The task force on diabetes and cardiovascular diseases of the european society of cardiology (ESC) and the european association for the study of diabetes (EASD).
        Eur Heart J. 2007; 28: 88-136
        • Nathan D.M.
        • Cleary P.A.
        • Backlund J.Y.
        • Genuth S.M.
        • Lachin J.M.
        • Orchard T.J.
        • Raskin P.
        • Zinman B.
        Intensive diabetes treatment and cardiovascular disease in patients with type 2 diabetes.
        N. Engl. J. Med. 2005; 353: 2643-2653
        • Gerstein H.C.
        • Miller M.E.
        • Byington R.P.
        • Goff D.C.
        • Bigger J.T.
        • Buse J.B.
        • Cushman W.C.
        • Genuth S.
        • Ismail-Beigi F.
        • Grimm Jr., R.H.
        • Probstfield J.L.
        • Simons-Morton D.G.
        • Friedewald W.T.
        Effects of intensive glucose lowering in type 2 diabetes.
        N. Engl. J. Med. 2008; 358: 2545-2559
        • Hsueh W.
        • Abel E.D.
        • Breslow J.L.
        • Maeda N.
        • Davis R.C.
        • Fisher E.A.
        • Dansky H.
        • McClain D.A.
        • McIndoe R.
        • Wassef M.K.
        • Rabadan-Diehl C.
        • Goldberg I.J.
        Recipes for creating animal models of diabetic cardiovascular disease.
        Circ. Res. 2007; 100: 1415-1427
        • Goldberg I.J.
        Why does diabetes increase atherosclerosis?.
        J. Clin. Invest. 2004; 114: 613-615
        • Gerrity R.G.
        • Natarajan R.
        • Nadler J.L.
        • Kimsey T.
        Diabetes-induced accelerated atherosclerosis in swine.
        Diabetes. 2001; 50: 1654-1665
        • Clarkson T.B.
        • Koritnik D.R.
        • Weingand K.W.
        • Miller L.C.
        Nonhuman primate models of atherosclerosis: potential for the study of diabetes mellitus and hyperinsulinemia.
        Metabolism. 1985; 34: 51-59
        • Santos-Gallego C.G.
        • Badimon J.J.
        • Ibáñez B.
        Modelos experimentals de atherosclerosis.
        Rev. Esp. Cardiol. Suppl. 2013; 13: 3-12
        • Wilensky R.L.
        • Shi Y.
        • Mohler E.R.
        • Hamamdzic D.
        • Burgert M.E.
        • Li J.
        • et al.
        Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development.
        Nat. Med. 2008; 14: 1059-1066
        • Maile L.A.
        • Capps B.E.
        • Ling Y.
        • Xi G.
        • Clemmons D.R.
        Hyperglycemia alters responsiveness of smooth muscle cells to insulin-like growth factor-I.
        Endocrinol. 2007; 148: 2435-2443
        • Baron J.H.
        • Moiseeva E.P.
        • de Bono D.P.
        • Abrams K.R.
        • Gershlick A.H.
        Inhibition of vascular smooth muscle cell adhesion and migration by c7E3 Fab (abciximab): a possible mechanism for influencing restenosis.
        Cardiovasc Res. 2000; 48: 464-472
        • Nilsson-Berglund L.M.
        • Zetterqvist A.V.
        • Nilsson-Ohman J.
        • Sigvardsson M.
        • Gonzalez Bosc L.V.
        • Smith M.L.
        • Salehi A.
        • Agradh E.
        • Fredrikson G.N.
        • Agardh C.D.
        • Nilsson J.
        • Wamhoff B.R.
        • Hultgardh-Nilsson A.
        • Gomez M.F.
        Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 218-224
        • Ling Y.
        • Maile L.A.
        • Badley-Clarke J.
        • Clemmons D.R.
        DOK1 mediates SHP-2 bidning to the alphaVbeta3 integrin and thereby regulates insulin-like growth factor I signaling in cultured vascular smooth muscle cells.
        J. Biol. Chem. 2005; 280: 3151-3158
        • Clemmons D.R.
        • Maile L.A.
        Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs.
        Mol. Endocrinol. 2005; 19: 1-11
        • Maile L.A.
        • Busby W.H.
        • Sitko K.
        • Capps B.E.
        • Sergent T.
        • Badley-Clarke J.
        • Clemmons D.R.
        Insulin-like growth factor-I signaling in smooth muscle cells is regulated by ligand binding to the 177CYDMKTTC184 sequence of the beta3-subunit of alphaVbeta3.
        Mol. Endocrinol. 2006; 20: 405-413
        • Maile L.A.
        • Busby W.H.
        • Nichols T.C.
        • Bellinger D.A.
        • Merricks E.P.
        • Rowland M.
        • Veluvolu U.
        • Clemmons D.R.
        A monoclonal antibody against alphaVbeta3 integrin inhibits development of atherosclerotic lesions in diabetic pigs.
        Sci. Transl. Med. 2010; 2 (ra11): 18
        • Maile L.A.
        • Busby W.H.
        • Gollahon K.A.
        • Flowers W.
        • Garbacik N.
        • Garbacik S.
        • Stewart K.
        • Nichols T.
        • Bellinger D.
        • Patel A.
        • Dunbar P.
        • Medlin M.
        • Clemmons D.
        Blocking ligand occupancy of the αVβ3 integrin inhibits the development of nephropathy in diabetic pigs.
        Endocrinology. 2014; 155: 4665-4675
        • Brodala N.
        • Merricks E.P.
        • Bellinger D.A.
        • Damrongsri D.
        • Offenbacher S.
        • Beck J.
        • et al.
        Porphyromonas gingivalis bacteremia induces coronary and aortic atherosclerosis in normocholesterolemic and hypercholesterolemic pigs.
        Arteriosclerosis, Thrombosis, Vasc. Biol. 2005; 25: 1456-1461
        • Nichols T.C.
        • Bellinger D.A.
        • Davis K.E.
        • Koch G.G.
        • Reddick R.L.
        • Read M.S.
        • et al.
        Porcine von Willebrand disease and atherosclerosis. Influence of polymorphism in apolipoprotein B100 genotype.
        Am. J. Pathol. 1992; 140: 403-415
        • Xue J.H.
        • Yuan Z.
        • Wu Y.
        • et al.
        High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance.
        Cardiovasc Res. 2010; 86: 141-150
        • Bishop G.G.
        • McPherson J.A.
        • Sanders J.M.
        • et al.
        Selective alpha(v)beta(3)-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit.
        Circ. 2001; 103: 1906-1911
        • Gerrity R.G.
        • Naito H.K.
        • Richardson M.
        • Schwartz C.J.
        Dietary induced atherogenesis in swine.
        Amer J. Path. 1979; 95: 775-785
        • Robbins C.S.
        • Hildendorf I.
        • Weber G.F.
        • et al.
        Local proliferation dominates lesional macrophage accumulation in atherosclerosis.
        Nat. Med. 2013; 19: 1166-1172
        • Nagareddy P.R.
        • Murphy A.J.
        • Stirzaker R.A.
        • Hu Y.
        • Yu S.
        • Miller R.G.
        • Ramkhelawon B.
        • Distel E.
        • Westerterp M.
        • Huang L.S.
        • Schmidt A.M.
        • Orchard T.J.
        • Fisher E.A.
        • Tall A.R.
        • Goldberg I.J.
        Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis.
        Cell Metab. 2013; 17: 695-708
        • Natarajan R.
        • Gerrity R.G.
        • Gu J.L.
        • Lanting L.
        • Thomas L.
        • Nadler J.L.
        Role of 12-lipoxygenase and oxidant stress in hyperglycemia-induced acceleration of atherosclerosis in a diabetic pig model.
        Diabetol. 2002; 45: 125-133
        • Bondi C.D.
        • Manickam N.
        • Lee D.Y.
        • Block K.
        • Gorin Y.
        • Abboud H.E.
        • Barnes J.L.
        NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts.
        J. Am. Soc. Nephrol. 2010; 21: 93-102
        • Xi G.
        • Shen X.
        • Maile L.A.
        • Gollahon K.
        • Clemmons D.R.
        Hyperglycemia enhances IGF-I stimulated Src activation via increasing Nox4-derived reactive oxygen species in a PKCζ-dependent manner in vascular smooth muscle cells.
        Diabetes. 2012; 61: 104-113
        • Choi K.Y.
        • Kim D.B.
        • Kim M.J.
        • Kwon B.J.
        • Chang S.Y.
        • Jang S.W.
        • Cho E.J.
        • Rho T.H.
        • Kim J.H.
        Higher plasma thrombospondin-1 levels in patients with coronary artery disease and diabetes mellitus.
        Korean Circ. J. 2012; 42: 100-106
        • Liu X.
        • Luo F.
        • Pan K.
        • Wu W.
        • Chen H.
        High glucose upregulates connective tissue growth factor expression in human vascular smooth muscle cells.
        BMC Cell Biol. 2007; 8: 1-9
        • Dufourcq P.
        • Couffinhal T.
        • Alzieu P.
        • Daret D.
        • Moreau C.
        • Duplaa C.
        • Bonnet J.
        Vitronectin is up-regulated after vascular injury and vitronectin blockade prevents neointima formation.
        Cardiovasc Res. 2002; 53: 952-962
        • de Kleijin D.P.
        • Moll F.L.
        • Hellings W.E.
        • et al.
        Local atherosclerotic plaques are a source of prognostic biomarkers for adverse cardiovascular events.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 612-619
        • Srivatsa S.S.
        • Fitzpatrick L.A.
        • Tsao P.W.
        • Reilly T.M.
        • Holmes D.R.
        • Schwartz R.S.
        • Mousa S.A.
        Selective alpha v beta 3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary arterial stent injury: evidence for the functional importance of integrin alpha v beta 3 and osteopontin expression during neointima formation.
        Cardiovasc Res. 1997; 36: 408-428
        • Panchatcharam M.
        • Miriyala S.
        • Yang F.
        • Leitges M.
        • Chrzanowska-Wodnicka M.
        • Quilliam L.A.
        • Anaya P.
        • Morris A.J.
        • Smyth S.S.
        Enhanced proliferation and migration of vascular smooth muscle cells in response to vascular injury under hyperglycemic conditions is controlled by beta3 integrin signaling.
        Int. J. Biochem. Cell Biol. 2010; 42: 965-974
        • Hoshiga M.
        • Alpers C.E.
        • Smith L.L.
        • Giachelli C.M.
        • Schwartz S.M.
        Alpha-v beta-3 integrin expression in normal and atherosclerotic artery.
        Circ. Res. 1995; 77: 1129-1135
        • Coleman K.R.
        • Braden G.A.
        • Willingham M.C.
        • Sane D.C.
        Vitaxin, a humanized monoclonal antibody to the vitronectin receptor (alphavbeta3), reduces neointimal hyperplasia and total vessel area after balloon injury in hypercholesterolemic rabbits.
        Circ. Res. 1999; 84: 1268-1276
        • Tam S.H.
        • Sassoli P.M.
        • Jordan R.E.
        • Nakada M.T.
        Abciximab (Reopro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and avb3 integrins.
        Circ. 1998; 98: 1085-1091
      1. Pathak A, Zhao R, Huang J, Stouffer GA. Eptifibatide and abciximab inhibit insulin-induced focal adhesion formation and proliferative responses in human aortic smooth muscle cells. Cardiovasc Diabetol. 1008:7:36.

        • Lincoff A.M.
        • Califf R.M.
        • Moliterno D.J.
        Complementary clinical benefits of coronary-arty stenting and blockade of platelet glycoprotein IIb/IIIa receptors. Evaluation of platelet IIb/IIIa inhibition in stenting investigators.
        N. Engl. J. Med. 1999; 341: 319-327
        • Perkan A.
        • Vitrella G.
        • Barbati G.
        • De Monte A.
        • D'Agata B.
        • Merlo M.
        • Giannini F.
        • Dell Grazia E.
        • Rakar S.
        • Salvi A.
        • Igidbashian D.
        • Morgera T.
        • Zalukar W.
        • Sinagra G.
        Impact of abcizimab on prognosis in diabetic patients undergoing primary percutaneous coronary intervention.
        J. Cardiovasc Med. 2013; 14: 127-135
        • Montalescot G.
        • Antoniucci D.
        • Kastrati A.
        • Neumann F.J.
        • Borentain M.
        • Migliorini A.
        • Boutron C.
        • Collet J.P.
        • Vicaut E.
        Abciximab in primary coronary stenting of ST-elevation myocardial infarction: a European meta-analysis on individual patients data with long-term follow-up.
        Eur. Heart J. 2007; 28: 443-449
        • Lopez-Minquez J.R.
        • Nogales J.M.
        • Gonzalez R.
        • Palanco C.
        • Doncel J.
        • Vaello A.
        • Gimenez F.
        • Morales A.
        • Alonso R.
        • Merchan A.
        Abciximab offers greater benefits to insulin-dependent diabetic patients undergoing coronary stent implantation.
        Cardiovasc Revasc Med. 2007; 8: 175-182
        • Marso S.P.
        • Lincoff A.M.
        • Ellis S.G.
        • Bhatt D.L.
        • Tanguay J.F.
        • Kleiman N.S.
        • Hammoud T.
        • Booth J.E.
        • Sapp S.K.
        • Topol E.J.
        Optimizing the percutaneous interventional outcomes for patients with diabetes mellitus: results of the EPISTENT (Evaluation of platelet IIb/IIIa inhibitor for stenting trial) diabetic substudy.
        Circ. 1999; 100: 2477-2484
        • Hansen P.R.
        • Iversen A.
        • Abdulla J.
        Improved clinical outcomes with intracoronary compared to intravenous abciximab in patients with acute coronary syndromes undergoing percutaneous coronary intervention: a systematic review and meta-analysis.
        J. Invasive Cardiol. 2010; 22: 278-282
        • Frye E.B.
        • Degenhardt T.P.
        • Thorpe S.R.
        • Baynes J.W.
        Role of the maillard reaction in aging tissue proteins. Advance glycation end product-dependent increase in imidazolium cross-links in human lens proteins.
        J. Biol. Chem. 1998; 273: 18714-18719
        • Yan S.F.
        • Ramasamy R.
        • Naka Y.
        • Schmidt A.M.
        Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond.
        Circ. Res. 2003; 93: 1159-1169
        • Park L.
        • Raman K.G.
        • Lee K.I.
        Suppression of accelerated diabetic atherosclerosis by soluble receptor for AGE (sRAGE).
        Nat. Med. 1998; 4: 1025-1031
        • Renard C.B.
        • Kramer F.
        • Johansson F.
        • Lamharzi N.
        • Tannock L.R.
        • vn Herrath M.G.
        • Chit A.
        • Bornfeldt K.E.
        Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions.
        J. Clin. Invest. 2004; 114: 659-668
        • Vikramadithyan R.K.
        • Hu Y.
        • Noh H.L.
        • Liang C.P.
        • Hallam K.
        • Tall A.R.
        • Ramasamy R.
        • Goldberg I.F.
        Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice.
        J. Clin. Invest. 2005; 115: 2434-2443