Advertisement

Proprotein convertase furin/PCSK3 and atherosclerosis: New insights and potential therapeutic targets

  • Kun Ren
    Affiliations
    Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi 541004, China

    Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, 421001, China
    Search for articles by this author
  • Ting Jiang
    Affiliations
    Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi 541004, China
    Search for articles by this author
  • Xi-Long Zheng
    Affiliations
    Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1 Canada
    Search for articles by this author
  • Guo-Jun Zhao
    Correspondence
    Corresponding author.
    Affiliations
    Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi 541004, China
    Search for articles by this author

      Highlights

      • The role of furin in lipid metabolism.
      • The role of furin in inflammatory response.
      • The role of furin in the regulation of blood pressure (BP).
      • The role of furin in the formation of atherosclerotic lesions.

      Abstract

      Furin, a member of the mammalian proprotein convertases family, can promote the proteolytic maturation of proproteins. It is known that furin is predominantly present in certain cell types of human atherosclerotic lesions and neointima in animal models, including vascular smooth muscle cells, endothelial cells and mononuclear inflammatory cells. Evidence suggests that furin participates in the initiation and progression of atherosclerosis through regulation of lipid and cholesterol metabolism, inflammatory response, blood pressure and the formation of atherosclerotic lesions. This review provides a panorama of the roles of furin in atherosclerosis and the insights into the prevention and treatment of atherosclerosis and cardiovascular disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cervelli T.
        • Borghini A.
        • Galli A.
        • et al.
        DNA damage and repair in atherosclerosis: current insights and future perspectives.
        Int. J. Mol. Sci. 2012; 13: 16929-16944
        • Libby P.
        • Theroux P.
        Pathophysiology of coronary artery disease.
        Circulation. 2005; 111: 3481-3488
        • Seidah N.G.
        The proprotein convertases, 20 years later.
        Methods Mol. Biol. 2011; 768: 23-57
        • Tian S.
        • Huajun W.
        • Wu J.
        Computational prediction of furin cleavage sites by a hybrid method and understanding mechanism underlying diseases.
        Sci. Rep. 2012; 2: 261
        • Zhou Z.
        • Zhang Q.
        • Lu X.
        • et al.
        The proprotein convertase furin is required for trophoblast syncytialization.
        Cell Death Dis. 2013; 4: e593
        • Scamuffa N.
        • Calvo F.
        • Chretien M.
        • et al.
        Proprotein convertases: lessons from knockouts.
        FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006; 20: 1954-1963
        • Kim W.
        • Essalmani R.
        • Szumska D.
        • et al.
        Loss of endothelial furin leads to cardiac malformation and early postnatal death.
        Mol. Cell. Biol. 2012; 32: 3382-3391
        • Becker G.L.
        • Lu Y.
        • Hardes K.
        • et al.
        Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases.
        J. Biol. Chem. 2012; 287: 21992-22003
        • Turpeinen H.
        • Raitoharju E.
        • Oksanen A.
        • et al.
        Proprotein convertases in human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF and APRIL.
        Atherosclerosis. 2011; 219: 799-806
        • Consortium C.A.D.
        • Deloukas P.
        • Kanoni S.
        • et al.
        Large-scale association analysis identifies new risk loci for coronary artery disease.
        Nat. Genet. 2013; 45: 25-33
        • Shiryaev S.A.
        • Chernov A.V.
        • Golubkov V.S.
        • et al.
        High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome.
        PloS One. 2013; 8: e54290
        • Stawowy P.
        • Kallisch H.
        • Borges Pereira Stawowy N.
        • et al.
        Immunohistochemical localization of subtilisin/kexin-like proprotein convertases in human atherosclerosis.
        Virchows Arch. Int. J. Pathol. 2005; 446: 351-359
        • Stawowy P.
        • Kappert K.
        The molecular biology of furin-like proprotein convertases in vascular remodelling.
        Methods Mol. Biol. 2011; 768: 191-206
        • Yasuda T.
        • Ishida T.
        • Rader D.J.
        Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis.
        Circ. J. Off. J. Jpn. Circ. Soc. 2010; 74: 2263-2270
        • Jin W.
        • Fuki I.V.
        • Seidah N.G.
        • et al.
        Proprotein convertases [corrected] are responsible for proteolysis and inactivation of endothelial lipase.
        J. Biol. Chem. 2005; 280: 36551-36559
        • Essalmani R.
        • Susan-Resiga D.
        • Chamberland A.
        • et al.
        Furin is the primary in vivo convertase of angiopoietin-like 3 and endothelial lipase in hepatocytes.
        J. Biol. Chem. 2013; 288: 26410-26418
        • Lei X.
        • Shi F.
        • Basu D.
        • et al.
        Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity.
        J. Biol. Chem. 2011; 286: 15747-15756
        • Liu J.
        • Afroza H.
        • Rader D.J.
        • et al.
        Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases.
        J. Biol. Chem. 2010; 285: 27561-27570
        • He N.Y.
        • Li Q.
        • Wu C.Y.
        • et al.
        Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives.
        Acta Pharmacol. Sin. 2017; 38: 301-311
        • Benjannet S.
        • Rhainds D.
        • Hamelin J.
        • et al.
        The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications.
        J. Biol. Chem. 2006; 281: 30561-30572
        • Essalmani R.
        • Susan-Resiga D.
        • Chamberland A.
        • et al.
        In vivo evidence that furin from hepatocytes inactivates PCSK9.
        J. Biol. Chem. 2011; 286: 4257-4263
        • Cameron J.
        • Holla O.L.
        • Laerdahl J.K.
        • et al.
        Characterization of novel mutations in the catalytic domain of the PCSK9 gene.
        J. Intern. Med. 2008; 263: 420-431
        • Lipari M.T.
        • Li W.
        • Moran P.
        • et al.
        Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels.
        J. Biol. Chem. 2012; 287: 43482-43491
        • Asada M.
        • Morioka T.
        • Yamazaki Y.
        • et al.
        Plasma C1q/TNF-related protein-9 levels are associated with atherosclerosis in patients with type 2 diabetes without renal dysfunction.
        J. Diabetes Res. 2016; 2016: 8624313
        • Aggarwal B.B.
        • Shishodia S.
        • Ashikawa K.
        • et al.
        The role of TNF and its family members in inflammation and cancer: lessons from gene deletion.
        Curr. Drug Targets. Inflamm. Allergy. 2002; 1: 327-341
        • Jiang J.
        • Mo Z.C.
        • Yin K.
        • et al.
        Epigallocatechin-3-gallate prevents TNF-alpha-induced NF-kappaB activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macrophage foam cells.
        Int. J. Mol. Med. 2012; 29: 946-956
        • Moreira-Tabaka H.
        • Peluso J.
        • Vonesch J.L.
        • et al.
        Unlike for human monocytes after LPS activation, release of TNF-alpha by THP-1 cells is produced by a TACE catalytically different from constitutive TACE.
        PloS One. 2012; 7: e34184
        • Horiuchi K.
        A brief history of tumor necrosis factor alpha–converting enzyme: an overview of ectodomain shedding.
        Keio J. Med. 2013; 62: 29-36
        • Peiretti F.
        • Canault M.
        • Deprez-Beauclair P.
        • et al.
        Intracellular maturation and transport of tumor necrosis factor alpha converting enzyme.
        Exp. Cell Res. 2003; 285: 278-285
        • Boulaftali Y.
        • Francois D.
        • Venisse L.
        • et al.
        Endothelial protease nexin-1 is a novel regulator of A disintegrin and metalloproteinase 17 maturation and endothelial protein C receptor shedding via furin inhibition.
        Arterioscler. Throm. Vasc. Biol. 2013; 33: 1647-1654
        • Schwarz J.
        • Broder C.
        • Helmstetter A.
        • et al.
        Short-term TNFalpha shedding is independent of cytoplasmic phosphorylation or furin cleavage of ADAM17.
        Biochim. Biophys. Acta. 2013; 1833: 3355-3367
        • Mackay F.
        • Schneider P.
        • Rennert P.
        • et al.
        BAFF AND APRIL: a tutorial on B cell survival.
        Annu. Rev. Immunol. 2003; 21: 231-264
        • Lee S.M.
        • Kim W.J.
        • Suk K.
        • et al.
        Cell to cell interaction can activate membrane-bound APRIL which are expressed on inflammatory macrophages.
        Immune Netw. 2010; 10: 173-180
        • Krumbholz M.
        • Theil D.
        • Derfuss T.
        • et al.
        BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma.
        J. Exp. Med. 2005; 201: 195-200
        • Lopez-Fraga M.
        • Fernandez R.
        • Albar J.P.
        • et al.
        Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase.
        EMBO Rep. 2001; 2: 945-951
        • Jackson S.W.
        • Scharping N.E.
        • Jacobs H.M.
        • et al.
        Cutting edge: BAFF overexpression reduces atherosclerosis via TACI-dependent B cell activation.
        J. Immunol. 2016; 197: 4529-4534
        • Kyaw T.
        • Cui P.
        • Tay C.
        • et al.
        BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE(-/-) mice.
        PloS One. 2013; 8: e60430
        • Sage A.P.
        • Tsiantoulas D.
        • Baker L.
        • et al.
        BAFF receptor deficiency reduces the development of atherosclerosis in mice–brief report.
        Arterioscler. Throm. Vasc. Biol. 2012; 32: 1573-1576
        • Gracey E.
        • Baglaenko Y.
        • Prayitno N.
        • et al.
        Pulmonary Chlamydia muridarum challenge activates lung interstitial macrophages which correlate with IFN-gamma production and infection control in mice.
        Eur. J. Immunol. 2015; 45: 3417-3430
        • Wang S.
        • Xia P.
        • Chen Y.
        • et al.
        Natural killer-like B cells prime innate lymphocytes against microbial infection.
        Immunity. 2016; 45: 131-144
        • Gao B.
        • Li L.
        • Zhu P.
        • et al.
        Chronic administration of methamphetamine promotes atherosclerosis formation in ApoE-/- knockout mice fed normal diet.
        Atherosclerosis. 2015; 243: 268-277
        • Pesu M.
        • Muul L.
        • Kanno Y.
        • et al.
        Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma.
        Blood. 2006; 108: 983-985
        • Hipp M.M.
        • Shepherd D.
        • Booth S.
        • et al.
        The processed amino-terminal fragment of human TLR7 acts as a chaperone to direct human TLR7 into endosomes.
        J. Immunol. 2015; 194: 5417-5425
        • Hipp M.M.
        • Shepherd D.
        • Gileadi U.
        • et al.
        Processing of human toll-like receptor 7 by furin-like proprotein convertases is required for its accumulation and activity in endosomes.
        Immunity. 2013; 39: 711-721
        • Salagianni M.
        • Galani I.E.
        • Lundberg A.M.
        • et al.
        Toll-like receptor 7 protects from atherosclerosis by constraining “inflammatory” macrophage activation.
        Circulation. 2012; 126: 952-962
        • International Consortium for Blood Pressure Genome-Wide Association S.
        • Ehret G.B.
        • Munroe P.B.
        • et al.
        Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
        Nature. 2011; 478: 103-109
        • Li N.
        • Luo W.
        • Juhong Z.
        • et al.
        Associations between genetic variations in the FURIN gene and hypertension.
        BMC Med. Genet. 2010; 11: 124
        • Turpeinen H.
        • Seppala I.
        • Lyytikainen L.P.
        • et al.
        A genome-wide expression quantitative trait loci analysis of proprotein convertase subtilisin/kexin enzymes identifies a novel regulatory gene variant for FURIN expression and blood pressure.
        Hum. Genet. 2015; 134: 627-636
        • Layne J.D.
        • Shridas P.
        • Webb N.R.
        Ectopically expressed pro-group X secretory phospholipase A2 is proteolytically activated in mouse adrenal cells by furin-like proprotein convertases: implications for the regulation of adrenal steroidogenesis.
        J. Biol. Chem. 2015; 290: 7851-7860
        • Santos P.C.
        • Krieger J.E.
        • Pereira A.C.
        Renin-angiotensin system, hypertension, and chronic kidney disease: pharmacogenetic implications.
        J. Pharmacol. Sci. 2012; 120: 77-88
        • Cousin C.
        • Bracquart D.
        • Contrepas A.
        • et al.
        Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma.
        Hypertension. 2009; 53: 1077-1082
        • Watanabe N.
        • Bokuda K.
        • Fujiwara T.
        • et al.
        Soluble (pro)renin receptor and blood pressure during pregnancy: a prospective cohort study.
        Hypertension. 2012; 60: 1250-1256
        • Sun Y.
        • Zhang J.N.
        • Zhao D.
        • et al.
        Role of the epithelial sodium channel in salt-sensitive hypertension.
        Acta Pharmacol. Sin. 2011; 32: 789-797
        • Pradervand S.
        • Vandewalle A.
        • Bens M.
        • et al.
        Dysfunction of the epithelial sodium channel expressed in the kidney of a mouse model for Liddle syndrome.
        J. Am. Soc. Nephrol. JASN. 2003; 14: 2219-2228
        • Hughey R.P.
        • Bruns J.B.
        • Kinlough C.L.
        • et al.
        Epithelial sodium channels are activated by furin-dependent proteolysis.
        J. Biol. Chem. 2004; 279: 18111-18114
        • Badri K.R.
        • Yue M.
        • Carretero O.A.
        • et al.
        Blood pressure homeostasis is maintained by a P311-TGF-beta axis.
        J. Clin. Investig. 2013; 123: 4502-4512
        • Dubois C.M.
        • Blanchette F.
        • Laprise M.H.
        • et al.
        Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme.
        Am. J. Pathol. 2001; 158: 305-316
        • Zacchigna L.
        • Vecchione C.
        • Notte A.
        • et al.
        Emilin1 links TGF-beta maturation to blood pressure homeostasis.
        Cell. 2006; 124: 929-942
        • Tuttolomondo A.
        • Di Raimondo D.
        • Pecoraro R.
        • et al.
        Atherosclerosis as an inflammatory disease.
        Curr. Pharm. Des. 2012; 18: 4266-4288
        • Tano J.Y.
        • Lee R.H.
        • Vazquez G.
        Macrophage function in atherosclerosis: potential roles of TRP channels.
        Channels. 2012; 6: 141-148
        • Dzau V.J.
        • Braun-Dullaeus R.C.
        • Sedding D.G.
        Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies.
        Nat. Med. 2002; 8: 1249-1256
        • Lei X.
        • Basu D.
        • Li Z.
        • et al.
        Hepatic overexpression of the prodomain of furin lessens progression of atherosclerosis and reduces vascular remodeling in response to injury.
        Atherosclerosis. 2014; 236: 121-130
        • Humphries M.J.
        Integrin structure.
        Biochem. Soc. Trans. 2000; 28: 311-339
        • Tiwari R.L.
        • Singh V.
        • Barthwal M.K.
        Macrophages: an elusive yet emerging therapeutic target of atherosclerosis.
        Med. Res. Rev. 2008; 28: 483-544
        • Lehmann M.
        • Rigot V.
        • Seidah N.G.
        • et al.
        Lack of integrin alpha-chain endoproteolytic cleavage in furin-deficient human colon adenocarcinoma cells LoVo.
        Biochem. J. 1996; 317: 803-809
        • Lu X.
        • Lu D.
        • Scully M.F.
        • et al.
        The role of integrin-mediated cell adhesion in atherosclerosis: pathophysiology and clinical opportunities.
        Curr. Pharm. Des. 2008; 14: 2140-2158
        • Lissitzky J.C.
        • Luis J.
        • Munzer J.S.
        • et al.
        Endoproteolytic processing of integrin pro-alpha subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7.
        Biochem. J. 2000; 346: 133-138
        • Dufourcq P.
        • Louis H.
        • Moreau C.
        • et al.
        Vitronectin expression and interaction with receptors in smooth muscle cells from human atheromatous plaque.
        Arterioscler. Throm. Vasc. Biol. 1998; 18: 168-176
        • Kappert K.
        • Furundzija V.
        • Fritzsche J.
        • et al.
        Integrin cleavage regulates bidirectional signalling in vascular smooth muscle cells.
        Thromb. Haemost. 2010; 103: 556-563
        • Slepian M.J.
        • Massia S.P.
        • Dehdashti B.
        • et al.
        Beta3-integrins rather than beta1-integrins dominate integrin-matrix interactions involved in postinjury smooth muscle cell migration.
        Circulation. 1998; 97: 1818-1827
        • Liaw L.
        • Skinner M.P.
        • Raines E.W.
        • et al.
        The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro.
        J. Clin. Investig. 1995; 95: 713-724
        • Bishop G.G.
        • McPherson J.A.
        • Sanders J.M.
        • et al.
        Selective alpha(v)beta(3)-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit.
        Circulation. 2001; 103: 1906-1911
        • Coleman K.R.
        • Braden G.A.
        • Willingham M.C.
        • et al.
        Vitaxin, a humanized monoclonal antibody to the vitronectin receptor (alphavbeta3), reduces neointimal hyperplasia and total vessel area after balloon injury in hypercholesterolemic rabbits.
        Circ. Res. 1999; 84: 1268-1276
        • Roycik M.D.
        • Myers J.S.
        • Newcomer R.G.
        • et al.
        Matrix metalloproteinase inhibition in atherosclerosis and stroke.
        Curr. Mol. Med. 2013; 13: 1299-1313
        • Lu Z.
        • Li Y.
        • Samuvel D.J.
        • et al.
        MD-2 is involved in the stimulation of matrix metalloproteinase-1 expression by interferon-gamma and high glucose in mononuclear cells - a potential role of MD-2 in Toll-like receptor 4-independent signalling.
        Immunology. 2013; 140: 301-313
        • Malemud C.J.
        Matrix metalloproteinases (MMPs) in health and disease: an overview.
        Front. Biosci. J. Virtual Libr. 2006; 11: 1696-1701
        • Motterle A.
        • Pu X.
        • Wood H.
        • et al.
        Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells.
        Hum. Mol. Genet. 2012; 21: 4021-4029
        • Lee H.
        • Chang K.W.
        • Yang H.Y.
        • et al.
        MT1-MMP regulates MMP-2 expression and angiogenesis-related functions in human umbilical vein endothelial cells.
        Biochem. Biophys. Res. Commun. 2013; 437: 232-238
        • Kuzuya M.
        • Nakamura K.
        • Sasaki T.
        • et al.
        Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice.
        Arterioscler. Throm. Vasc. Biol. 2006; 26: 1120-1125
        • Yana I.
        • Weiss S.J.
        Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases.
        Mol. Biol. Cell. 2000; 11: 2387-2401
        • Stawowy P.
        • Meyborg H.
        • Stibenz D.
        • et al.
        Furin-like proprotein convertases are central regulators of the membrane type matrix metalloproteinase-pro-matrix metalloproteinase-2 proteolytic cascade in atherosclerosis.
        Circulation. 2005; 111: 2820-2827
        • August P.
        • Suthanthiran M.
        Transforming growth factor beta signaling, vascular remodeling, and hypertension.
        N. Engl. J. Med. 2006; 354: 2721-2723
        • McCaffrey T.A.
        TGF-beta signaling in atherosclerosis and restenosis.
        Front. Biosci. 2009; 1: 236-245
        • Sluijter J.P.
        • Verloop R.E.
        • Pulskens W.P.
        • et al.
        Involvement of furin-like proprotein convertases in the arterial response to injury.
        Cardiovasc. Res. 2005; 68: 136-143
        • Goumans M.J.
        • Lebrin F.
        • Valdimarsdottir G.
        Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways.
        Trends Cardiovasc. Med. 2003; 13: 301-307
        • Bobik A.
        • Agrotis A.
        • Kanellakis P.
        • et al.
        Distinct patterns of transforming growth factor-beta isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-beta in fibrofatty lesion development.
        Circulation. 1999; 99: 2883-2891
        • Levi-Montalcini R.
        The nerve growth factor 35 years later.
        Science. 1987; 237: 1154-1162
        • Lim K.C.
        • Tyler C.M.
        • Lim S.T.
        • et al.
        Proteolytic processing of proNGF is necessary for mature NGF regulated secretion from neurons.
        Biochem. Biophys. Res. Commun. 2007; 361: 599-604
        • Armugam A.
        • Koh D.C.
        • Ching C.S.
        • et al.
        Pro-domain in precursor nerve growth factor mediates cell death.
        Neurochem. Int. 2012; 60: 852-863
        • Stawowy P.
        • Marcinkiewicz J.
        • Graf K.
        • et al.
        Selective expression of the proprotein convertases furin, pc5, and pc7 in proliferating vascular smooth muscle cells of the rat aorta in vitro.
        J. Histochem. Cytochem. Off. J. Histochem. Soc. 2001; 49: 323-332
        • Doran A.C.
        • Meller N.
        • McNamara C.A.
        Role of smooth muscle cells in the initiation and early progression of atherosclerosis.
        Arterioscler. Throm. Vasc. Biol. 2008; 28: 812-819
        • Urban D.
        • Lorenz J.
        • Meyborg H.
        • et al.
        Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor.
        J. Biochem. 2013; 153: 197-207
        • Livingstone C.
        Insulin-like growth factor-I (IGF-I) and clinical nutrition.
        Clin. Sci. 2013; 125: 265-280
        • Baserga R.
        The IGF-I receptor in cancer research.
        Exp. Cell Res. 1999; 253: 1-6
        • Khatib A.M.
        • Siegfried G.
        • Prat A.
        • et al.
        Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions.
        J. Biol. Chem. 2001; 276: 30686-30693
        • Wang L.
        • Han Y.
        • Shen Y.
        • et al.
        Endothelial insulin-like growth factor-1 modulates proliferation and phenotype of smooth muscle cells induced by low shear stress.
        Ann. Biomed. Eng. 2014; 42: 776-786
        • Stawowy P.
        • Kallisch H.
        • Kilimnik A.
        • et al.
        Proprotein convertases regulate insulin-like growth factor 1-induced membrane-type 1 matrix metalloproteinase in VSMCs via endoproteolytic activation of the insulin-like growth factor-1 receptor.
        Biochem. Biophys. Res. Commun. 2004; 321: 531-538
        • Fu J.
        • Bassi D.E.
        • Zhang J.
        • et al.
        Transgenic overexpression of the proprotein convertase furin enhances skin tumor growth.
        Neoplasia. 2012; 14: 271-282
        • Stawowy P.
        • Fleck E.
        Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels.
        J. Mol. Med. 2005; 83: 865-875
        • Oksanen A.
        • Aittomaki S.
        • Jankovic D.
        • et al.
        Proprotein convertase FURIN constrains Th2 differentiation and is critical for host resistance against Toxoplasma gondii.
        J. Immunol. 2014; 193: 5470-5479
        • Cordova Z.M.
        • Gronholm A.
        • Kytola V.
        • et al.
        Myeloid cell expressed proprotein convertase FURIN attenuates inflammation.
        Oncotarget. 2016; 7: 54392-54404
        • Hajdin K.
        • D'Alessandro V.
        • Niggli F.K.
        • et al.
        Furin targeted drug delivery for treatment of rhabdomyosarcoma in a mouse model.
        PloS One. 2010; 5: e10445