Advertisement

Wnt signaling, a novel pathway regulating blood pressure? State of the art review

      Highlights

      • Mutations in Wnt signaling components have been implicated in metabolic traits such as hypertension and hyperlipidemia.
      • Wnt signaling influences peripheral and central regulation of blood pressure.
      • Derangements in Wnt signaling may underlie arterial calcification, hypertension and vascular diseases.
      • Understanding Wnt signaling in blood vessels may help with the development of novel therapeutics against hypertension.

      Abstract

      Recent antihypertensive trials show conflicting results on blood pressure (BP) targets in patient populations with different metabolic profiles, with lowest benefit from tight BP control observed in patients with type 2 diabetes mellitus. This paradox could arise from the heterogeneity of study populations and underscores the importance of precision medicine initiatives towards understanding and treating hypertension. Wnt signaling pathways and genetic variations in its signaling peptides have been recently associated with metabolic syndrome, hypertension and diabetes, generating a breakthrough for advancement of precision medicine in the field of hypertension.
      We performed a review of PubMed for publications addressing the contributions of Wnt to BP regulation and hypertension. In addition, we performed a manual search of the reference lists for relevant articles, and included unpublished observations from our laboratory.
      There is emerging evidence for Wnt's role in BP regulation and its involvement in the pathogenesis of hypertension. Wnt signaling has pleiotropic effects on distinct pathways that involve vascular smooth muscle plasticity, and cardiac, renal, and neural physiology.
      Hypertension is a heterogeneous disease with unique molecular pathways regulating its response to therapy. Recognition of these pathways is a prerequisite to identify novel targets for drug development and personalizing medicine. A review of Wnt signaling reveals its emerging role in BP regulation and as a target for novel drug development that has the potential to transform the therapy of hypertension in specific populations.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nusse R.
        • Brown A.
        • Papkoff J.
        • Scambler P.
        • Shackleford G.
        • McMahon A.
        • et al.
        A new nomenclature for int-1 and related genes: the Wnt gene family.
        Cell. 1991; 64: 231
        • MacDonald B.T.
        • Tamai K.
        • He X.
        Wnt/beta-catenin signaling: components, mechanisms, and diseases.
        Dev. Cell. 2009; 17: 9-26
        • Egan B.M.
        • Zhao Y.
        • Axon R.N.
        US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008.
        JAMA. 2010; 303: 2043-2050
        • Wright J.D.
        • Hughes J.P.
        • Ostchega Y.
        • Yoon S.S.
        • Nwankwo T.
        Mean systolic and diastolic blood pressure in adults aged 18 and over in the United States.
        Natl. Health Stat. Rep. 2001-2008; 2011 (4): 1-22
        • Kearney P.M.
        • Whelton M.
        • Reynolds K.
        • Muntner P.
        • Whelton P.K.
        • He J.
        Global burden of hypertension: analysis of worldwide data.
        Lancet. 2005; 365: 217-223
        • Abou Ziki M.D.
        • Mani A.
        Metabolic syndrome: genetic insights into disease pathogenesis.
        Curr. Opin. Lipidol. 2016; 27: 162-171
        • Hottenga J.J.
        • Boomsma D.I.
        • Kupper N.
        • Posthuma D.
        • Snieder H.
        • Willemsen G.
        • et al.
        Heritability and stability of resting blood pressure.
        Twin Res. Hum. Genet. 2005; 8: 499-508
        • Kupper N.
        • Willemsen G.
        • Riese H.
        • Posthuma D.
        • Boomsma D.I.
        • de Geus E.J.
        Heritability of daytime ambulatory blood pressure in an extended twin design.
        Hypertension. 2005; 45: 80-85
        • Garovic V.D.
        • Hilliard A.A.
        • Turner S.T.
        Monogenic forms of low-renin hypertension.
        Nat. Clin. Pract. Nephrol. 2006; 2: 624-630
        • Hassan-Smith Z.
        • Stewart P.M.
        Inherited forms of mineralocorticoid hypertension.
        Curr. Opin. Endocrinol. Diabetes Obes. 2011; 18: 177-185
        • Simonetti G.D.
        • Mohaupt M.G.
        • Bianchetti M.G.
        Monogenic forms of hypertension.
        Eur. J. Pediatr. 2012; 171: 1433-1439
        • Materson B.J.
        • Reda D.J.
        • Cushman W.C.
        • Massie B.M.
        • Freis E.D.
        • Kochar M.S.
        • et al.
        Single-drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. The department of veterans affairs cooperative study group on antihypertensive agents.
        N. Engl. J. Med. 1993; 328: 914-921
        • Group A.S.
        • Cushman W.C.
        • Evans G.W.
        • Byington R.P.
        • Goff Jr., D.C.
        • Grimm Jr., R.H.
        • et al.
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N. Engl. J. Med. 2010; 362: 1575-1585
        • Group S.R.
        • Wright Jr., J.T.
        • Williamson J.D.
        • Whelton P.K.
        • Snyder J.K.
        • Sink K.M.
        • et al.
        A randomized trial of intensive versus standard blood-pressure control.
        N. Engl. J. Med. 2015; 373: 2103-2116
        • Nusse R.
        Wnt signaling.
        Cold Spring Harb. Perspect. Biol. 2012; 4
        • He X.
        • Semenov M.
        • Tamai K.
        • Zeng X.
        LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way.
        Development. 2004; 131: 1663-1677
        • Lu W.
        • Yamamoto V.
        • Ortega B.
        • Baltimore D.
        Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth.
        Cell. 2004; 119: 97-108
        • Kani S.
        • Oishi I.
        • Yamamoto H.
        • Yoda A.
        • Suzuki H.
        • Nomachi A.
        • et al.
        The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon.
        J. Biol. Chem. 2004; 279: 50102-50109
        • Mikels A.J.
        • Nusse R.
        Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context.
        PLoS Biol. 2006; 4: e115
        • Komiya Y.
        • Habas R.
        Wnt signal transduction pathways.
        Organogenesis. 2008; 4: 68-75
        • Wang S.
        • Song K.
        • Srivastava R.
        • Dong C.
        • Go G.W.
        • Li N.
        • et al.
        Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a.
        FASEB J. 2015; 29: 3436-3445
        • Singh R.
        • De Aguiar R.B.
        • Naik S.
        • Mani S.
        • Ostadsharif K.
        • Wencker D.
        • et al.
        LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans.
        Cell Metab. 2013; 17: 197-209
        • Kohn A.D.
        • Moon R.T.
        Wnt and calcium signaling: beta-catenin-independent pathways.
        Cell Calcium. 2005; 38: 439-446
        • Ishitani T.
        • Ninomiya-Tsuji J.
        • Nagai S.
        • Nishita M.
        • Meneghini M.
        • Barker N.
        • et al.
        The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF.
        Nature. 1999; 399: 798-802
        • Woods C.G.
        • Stricker S.
        • Seemann P.
        • Stern R.
        • Cox J.
        • Sherridan E.
        • et al.
        Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.
        Am. J. Hum. Genet. 2006; 79: 402-408
        • Niemann S.
        • Zhao C.
        • Pascu F.
        • Stahl U.
        • Aulepp U.
        • Niswander L.
        • et al.
        Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family.
        Am. J. Hum. Genet. 2004; 74: 558-563
        • Oates N.A.
        • van Vliet J.
        • Duffy D.L.
        • Kroes H.Y.
        • Martin N.G.
        • Boomsma D.I.
        • et al.
        Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly.
        Am. J. Hum. Genet. 2006; 79: 155-162
        • Balemans W.
        • Ebeling M.
        • Patel N.
        • Van Hul E.
        • Olson P.
        • Dioszegi M.
        • et al.
        Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST).
        Hum. Mol. Genet. 2001; 10: 537-543
        • Xu Q.
        • Wang Y.
        • Dabdoub A.
        • Smallwood P.M.
        • Williams J.
        • Woods C.
        • et al.
        Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair.
        Cell. 2004; 116: 883-895
        • Logan C.Y.
        • Nusse R.
        The Wnt signaling pathway in development and disease.
        Annu. Rev. Cell Dev. Biol. 2004; 20: 781-810
        • Clevers H.
        Wnt/beta-catenin signaling in development and disease.
        Cell. 2006; 127: 469-480
        • Kinzler K.W.
        • Nilbert M.C.
        • Vogelstein B.
        • Bryan T.M.
        • Levy D.B.
        • Smith K.J.
        • et al.
        Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers.
        Science. 1991; 251: 1366-1370
        • Major M.B.
        • Camp N.D.
        • Berndt J.D.
        • Yi X.
        • Goldenberg S.J.
        • Hubbert C.
        • et al.
        Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling.
        Science. 2007; 316: 1043-1046
        • Chilosi M.
        • Poletti V.
        • Zamo A.
        • Lestani M.
        • Montagna L.
        • Piccoli P.
        • et al.
        Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis.
        Am. J. Pathol. 2003; 162: 1495-1502
        • Edeling M.
        • Ragi G.
        • Huang S.
        • Pavenstadt H.
        • Susztak K.
        Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog.
        Nat. Rev. Nephrol. 2016; 12: 426-439
        • Dees C.
        • Distler J.H.
        Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies?.
        Exp. Dermatol. 2013; 22: 710-713
        • Singh R.
        • Smith E.
        • Fathzadeh M.
        • Liu W.
        • Go G.W.
        • Subrahmanyan L.
        • et al.
        Rare nonconservative LRP6 mutations are associated with metabolic syndrome.
        Hum. Mutat. 2013; 34: 1221-1225
        • Mani A.
        • Radhakrishnan J.
        • Wang H.
        • Mani A.
        • Mani M.A.
        • Nelson-Williams C.
        • et al.
        LRP6 mutation in a family with early coronary disease and metabolic risk factors.
        Science. 2007; 315: 1278-1282
        • Wojczynski M.K.
        • Li M.
        • Bielak L.F.
        • Kerr K.F.
        • Reiner A.P.
        • Wong N.D.
        • et al.
        Genetics of coronary artery calcification among African Americans, a meta-analysis.
        BMC Med. Genet. 2013; 14: 75
        • Sarzani R.
        • Salvi F.
        • Bordicchia M.
        • Guerra F.
        • Battistoni I.
        • Pagliariccio G.
        • et al.
        Carotid artery atherosclerosis in hypertensive patients with a functional LDL receptor-related protein 6 gene variant.
        Nutr. Metab. Cardiovasc Dis. 2011; 21: 150-156
        • Muendlein A.
        • Saely C.H.
        • Geller-Rhomberg S.
        • Sonderegger G.
        • Rein P.
        • Winder T.
        • et al.
        Single nucleotide polymorphisms of TCF7L2 are linked to diabetic coronary atherosclerosis.
        PLoS One. 2011; 6: e17978
        • Delgado-Lista J.
        • Perez-Martinez P.
        • Garcia-Rios A.
        • Phillips C.M.
        • Williams C.M.
        • Gulseth H.L.
        • et al.
        Pleiotropic effects of TCF7L2 gene variants and its modulation in the metabolic syndrome: from the LIPGENE study.
        Atherosclerosis. 2011; 214: 110-116
        • Wain L.V.
        • Verwoert G.C.
        • O'Reilly P.F.
        • Shi G.
        • Johnson T.
        • Johnson A.D.
        • et al.
        Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
        Nat. Genet. 2011; 43: 1005-1011
        • Al-Aly Z.
        Arterial calcification: a tumor necrosis factor-alpha mediated vascular Wnt-opathy.
        Transl. Res. 2008; 151: 233-239
        • Adeyemo A.
        • Gerry N.
        • Chen G.
        • Herbert A.
        • Doumatey A.
        • Huang H.
        • et al.
        A genome-wide association study of hypertension and blood pressure in African Americans.
        PLoS Genet. 2009; 5: e1000564
        • Iguchi H.
        • Urashima Y.
        • Inagaki Y.
        • Ikeda Y.
        • Okamura M.
        • Tanaka T.
        • et al.
        SOX6 suppresses cyclin D1 promoter activity by interacting with beta-catenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation.
        J. Biol. Chem. 2007; 282: 19052-19061
        • Zorn A.M.
        • Barish G.D.
        • Williams B.O.
        • Lavender P.
        • Klymkowsky M.W.
        • Varmus H.E.
        Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin.
        Mol. Cell. 1999; 4: 487-498
        • Akiyama H.
        • Lyons J.P.
        • Mori-Akiyama Y.
        • Yang X.
        • Zhang R.
        • Zhang Z.
        • et al.
        Interactions between Sox9 and beta-catenin control chondrocyte differentiation.
        Genes Dev. 2004; 18: 1072-1087
        • Sinner D.
        • Kordich J.J.
        • Spence J.R.
        • Opoka R.
        • Rankin S.
        • Lin S.C.
        • et al.
        Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells.
        Mol. Cell Biol. 2007; 27: 7802-7815
        • Araujo F.C.
        • Milsted A.
        • Watanabe I.K.
        • Del Puerto H.L.
        • Santos R.A.
        • Lazar J.
        • et al.
        Similarities and differences of X and Y chromosome homologous genes, SRY and SOX3, in regulating the renin-angiotensin system promoters.
        Physiol. Genomics. 2015; 47: 177-186
        • Srivastava R.
        • Zhang J.
        • Go G.W.
        • Narayanan A.
        • Nottoli T.P.
        • Mani A.
        Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease.
        Cell Rep. 2015; 13: 746-759
        • Sumida T.
        • Naito A.T.
        • Nomura S.
        • Nakagawa A.
        • Higo T.
        • Hashimoto A.
        • et al.
        Complement C1q-induced activation of beta-catenin signalling causes hypertensive arterial remodelling.
        Nat. Commun. 2015; 6: 6241
        • Letavernier E.
        • Perez J.
        • Bellocq A.
        • Mesnard L.
        • de Castro Keller A.
        • Haymann J.P.
        • et al.
        Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension.
        Circ. Res. 2008; 102: 720-728
        • McKernan A.M.
        • Calaresu F.R.
        Insulin microinjection into the nucleus tractus solitarii of the rat attenuates the baroreceptor reflex.
        J. Auton. Nerv. Syst. 1996; 61: 128-138
        • Ruggeri P.
        • Molinari C.
        • Brunori A.
        • Cogo C.E.
        • Mary D.A.
        • Picchio V.
        • et al.
        The direct effect of insulin on barosensitive neurones in the nucleus tractus solitarii of rats.
        Neuroreport. 2001; 12: 3719-3722
        • Huang H.N.
        • Lu P.J.
        • Lo W.C.
        • Lin C.H.
        • Hsiao M.
        • Tseng C.J.
        In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate.
        Circulation. 2004; 110: 2476-2483
        • Chiang H.T.
        • Cheng W.H.
        • Lu P.J.
        • Huang H.N.
        • Lo W.C.
        • Tseng Y.C.
        • et al.
        Neuronal nitric oxide synthase activation is involved in insulin-mediated cardiovascular effects in the nucleus tractus solitarii of rats.
        Neuroscience. 2009; 159: 727-734
        • Tseng C.J.
        • Liu H.Y.
        • Lin H.C.
        • Ger L.P.
        • Tung C.S.
        • Yen M.H.
        Cardiovascular effects of nitric oxide in the brain stem nuclei of rats.
        Hypertension. 1996; 27: 36-42
        • Cheng P.W.
        • Chen Y.Y.
        • Cheng W.H.
        • Lu P.J.
        • Chen H.H.
        • Chen B.R.
        • et al.
        Wnt signaling regulates blood pressure by downregulating a GSK-3beta-mediated pathway to enhance insulin signaling in the central nervous system.
        Diabetes. 2015; 64: 3413-3424
        • Bafico A.
        • Liu G.
        • Yaniv A.
        • Gazit A.
        • Aaronson S.A.
        Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow.
        Nat. Cell Biol. 2001; 3: 683-686
        • Zelarayan L.
        • Gehrke C.
        • Bergmann M.W.
        Role of beta-catenin in adult cardiac remodeling.
        Cell Cycle. 2007; 6: 2120-2126
        • van de Schans V.A.
        • van den Borne S.W.
        • Strzelecka A.E.
        • Janssen B.J.
        • van der Velden J.L.
        • Langen R.C.
        • et al.
        Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy.
        Hypertension. 2007; 49: 473-480
        • Zheng Q.
        • Chen P.
        • Xu Z.
        • Li F.
        • Yi X.P.
        Expression and redistribution of beta-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat.
        J. Mol. Histol. 2013; 44: 565-573
        • Fujita A.
        • Takahashi-Yanaga F.
        • Morimoto S.
        • Yoshihara T.
        • Arioka M.
        • Igawa K.
        • et al.
        2,5-Dimethylcelecoxib prevents pressure-induced left ventricular remodeling through GSK-3 activation.
        Hypertens. Res. 2017; 40: 130-139
        • Solomon S.D.
        • McMurray J.J.
        • Pfeffer M.A.
        • Wittes J.
        • Fowler R.
        • Finn P.
        • et al.
        Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention.
        N. Engl. J. Med. 2005; 352: 1071-1080
        • Solomon S.D.
        • Wittes J.
        • Finn P.V.
        • Fowler R.
        • Viner J.
        • Bertagnolli M.M.
        • et al.
        Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: the cross trial safety analysis.
        Circulation. 2008; 117: 2104-2113
        • Kapinas K.
        • Kessler C.
        • Ricks T.
        • Gronowicz G.
        • Delany A.M.
        miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop.
        J. Biol. Chem. 2010; 285: 25221-25231
        • Tan M.
        • Wu J.
        • Cai Y.
        Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer.
        Biochem. Biophys. Res. Commun. 2013; 438: 673-679
        • Han W.
        • Han Y.
        • Liu X.
        • Shang X.
        Effect of miR-29a inhibition on ventricular hypertrophy induced by pressure overload.
        Cell Biochem. Biophys. 2015; 71: 821-826
        • Roncarati R.
        • Viviani Anselmi C.
        • Losi M.A.
        • Papa L.
        • Cavarretta E.
        • Da Costa Martins P.
        • et al.
        Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy.
        J. Am. Coll. Cardiol. 2014; 63: 920-927
        • Shao S.
        • Cai W.
        • Sheng J.
        • Yin L.
        Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats.
        Am. J. Transl. Res. 2015; 7: 1345-1356
        • Marinou K.
        • Christodoulides C.
        • Antoniades C.
        • Koutsilieris M.
        Wnt signaling in cardiovascular physiology.
        Trends Endocrinol. Metab. 2012; 23: 628-636
        • ter Horst P.
        • Smits J.F.
        • Blankesteijn W.M.
        The Wnt/Frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand?.
        Acta Physiol. (Oxf). 2012; 204: 110-117
        • Yu J.
        Wnt signaling and renal medulla formation.
        Pediatr. Nephrol. 2011; 26: 1553-1557
        • Halt K.
        • Vainio S.
        Coordination of kidney organogenesis by Wnt signaling.
        Pediatr. Nephrol. 2014; 29: 737-744
        • Ludwig J.
        • Kerscher S.
        • Brandt U.
        • Pfeiffer K.
        • Getlawi F.
        • Apps D.K.
        • et al.
        Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules.
        J. Biol. Chem. 1998; 273: 10939-10947
        • Binger K.J.
        • Muller D.N.
        Autophagy and the (Pro)renin receptor.
        Front. Endocrinol. (Lausanne). 2013; 4: 155
        • Nguyen G.
        • Delarue F.
        • Burckle C.
        • Bouzhir L.
        • Giller T.
        • Sraer J.D.
        Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin.
        J. Clin. Invest. 2002; 109: 1417-1427
        • Cruciat C.M.
        • Ohkawara B.
        • Acebron S.P.
        • Karaulanov E.
        • Reinhard C.
        • Ingelfinger D.
        • et al.
        Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling.
        Science. 2010; 327: 459-463
        • Gao C.
        • Cao W.
        • Bao L.
        • Zuo W.
        • Xie G.
        • Cai T.
        • et al.
        Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation.
        Nat. Cell Biol. 2010; 12: 781-790
        • Hermle T.
        • Saltukoglu D.
        • Grunewald J.
        • Walz G.
        • Simons M.
        Regulation of Frizzled-dependent planar polarity signaling by a V-ATPase subunit.
        Curr. Biol. 2010; 20: 1269-1276
        • Hirose T.
        • Hashimoto M.
        • Totsune K.
        • Metoki H.
        • Asayama K.
        • Kikuya M.
        • et al.
        Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study.
        Am. J. Hypertens. 2009; 22: 294-299
        • Ott C.
        • Schneider M.P.
        • Delles C.
        • Schlaich M.P.
        • Hilgers K.F.
        • Schmieder R.E.
        Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men.
        Pharmacogenet Genomics. 2011; 21: 347-349
        • Song R.
        • Preston G.
        • Kidd L.
        • Bushnell D.
        • Sims-Lucas S.
        • Bates C.M.
        • et al.
        Prorenin receptor is critical for nephron progenitors.
        Dev. Biol. 2016; 409: 382-391
        • Karner C.M.
        • Das A.
        • Ma Z.
        • Self M.
        • Chen C.
        • Lum L.
        • et al.
        Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development.
        Development. 2011; 138: 1247-1257
        • Park J.S.
        • Ma W.
        • O'Brien L.L.
        • Chung E.
        • Guo J.J.
        • Cheng J.G.
        • et al.
        Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks.
        Dev. Cell. 2012; 23: 637-651
        • Bhandaru M.
        • Kempe D.S.
        • Rotte A.
        • Rexhepaj R.
        • Kuhl D.
        • Lang F.
        Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 297: R571-R575
        • Just A.
        Going with the Wnt? Focus on “Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC”.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 297: R568-R570
        • Pauletto P.
        • Sarzani R.
        • Rappelli A.
        • Chiavegato A.
        • Pessina A.C.
        • Sartore S.
        Differentiation and growth of vascular smooth muscle cells in experimental hypertension.
        Am. J. Hypertens. 1994; 7: 661-674
        • Kontaraki J.E.
        • Marketou M.E.
        • Zacharis E.A.
        • Parthenakis F.I.
        • Vardas P.E.
        Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension.
        J. Hum. Hypertens. 2014; 28: 510-516
        • Itaranta P.
        • Chi L.
        • Seppanen T.
        • Niku M.
        • Tuukkanen J.
        • Peltoketo H.
        • et al.
        Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney.
        Dev. Biol. 2006; 293: 473-483
        • Cohen E.D.
        • Ihida-Stansbury K.
        • Lu M.M.
        • Panettieri R.A.
        • Jones P.L.
        • Morrisey E.E.
        Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway.
        J. Clin. Invest. 2009; 119: 2538-2549
        • Wang X.
        • Xiao Y.
        • Mou Y.
        • Zhao Y.
        • Blankesteijn W.M.
        • Hall J.L.
        A role for the beta-catenin/T-cell factor signaling cascade in vascular remodeling.
        Circ. Res. 2002; 90: 340-347
        • Tsaousi A.
        • Williams H.
        • Lyon C.A.
        • Taylor V.
        • Swain A.
        • Johnson J.L.
        • et al.
        Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening.
        Circ. Res. 2011; 108: 427-436
        • Mill C.
        • George S.J.
        Wnt signalling in smooth muscle cells and its role in cardiovascular disorders.
        Cardiovasc Res. 2012; 95: 233-240
        • Keramati A.R.
        • Singh R.
        • Lin A.
        • Faramarzi S.
        • Ye Z.J.
        • Mane S.
        • et al.
        Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 1914-1918
        • Zhan Y.
        • Kim S.
        • Izumi Y.
        • Izumiya Y.
        • Nakao T.
        • Miyazaki H.
        • et al.
        Role of JNK, p38, and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 795-801
        • Simon A.R.
        • Takahashi S.
        • Severgnini M.
        • Fanburg B.L.
        • Cochran B.H.
        Role of the JAK-STAT pathway in PDGF-stimulated proliferation of human airway smooth muscle cells.
        Am. J. Physiol. Lung Cell Mol. Physiol. 2002; 282: L1296-L1304
        • Lin X.
        • Wang Z.
        • Gu L.
        • Deuel T.F.
        Functional analysis of the human platelet-derived growth factor A-chain promoter region.
        J. Biol. Chem. 1992; 267: 25614-25619
        • Park G.H.
        • Plummer 3rd, H.K.
        • Krystal G.W.
        Selective Sp1 binding is critical for maximal activity of the human c-kit promoter.
        Blood. 1998; 92: 4138-4149
        • Zhang X.
        • Diab I.H.
        • Zehner Z.E.
        ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1.
        Nucleic Acids Res. 2003; 31: 2900-2914
        • Cheng S.L.
        • Ramachandran B.
        • Behrmann A.
        • Shao J.S.
        • Mead M.
        • Smith C.
        • et al.
        Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR-/- mice by restraining noncanonical Wnt signals.
        Circ. Res. 2015; 117: 142-156
        • Naito A.T.
        • Sumida T.
        • Nomura S.
        • Liu M.L.
        • Higo T.
        • Nakagawa A.
        • et al.
        Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes.
        Cell. 2012; 149: 1298-1313
        • Kahn M.
        Can we safely target the WNT pathway?.
        Nat. Rev. Drug Discov. 2014; 13: 513-532
        • Evans J.G.
        • Rose G.
        Hypertens. Br. Med. Bull. 1971; 27: 37-42
        • Lewington S.
        • Clarke R.
        • Qizilbash N.
        • Peto R.
        • Collins R.
        • Prospective Studies C.
        Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.
        Lancet. 2002; 360: 1903-1913
        • Yusuf S.
        • Lonn E.
        • Pais P.
        • Bosch J.
        • Lopez-Jaramillo P.
        • Zhu J.
        • et al.
        Blood-pressure and cholesterol lowering in persons without cardiovascular disease.
        N. Engl. J. Med. 2016; 374: 2032-2043
        • Lonn E.M.
        • Bosch J.
        • Lopez-Jaramillo P.
        • Zhu J.
        • Liu L.
        • Pais P.
        • et al.
        Blood-pressure lowering in intermediate-risk persons without cardiovascular disease.
        N. Engl. J. Med. 2016; 374: 2009-2020