Advertisement
Research Article| Volume 262, P87-93, July 2017

Lutein exerts anti-inflammatory effects in patients with coronary artery disease

  • Rosanna W.S. Chung
    Correspondence
    Corresponding author. Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden.
    Affiliations
    Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
    Search for articles by this author
  • Per Leanderson
    Affiliations
    Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden
    Search for articles by this author
  • Anna K. Lundberg
    Affiliations
    Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
    Search for articles by this author
  • Lena Jonasson
    Affiliations
    Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
    Search for articles by this author

      Highlights

      • Lutein correlates inversely IL-6 in plasma of stable coronary artery disease patients.
      • Lutein is taken up by blood mononuclear cells ex vivo.
      • Lutein decreases production and secretion of inflammatory cytokines ex vivo.
      • Lutein has the potential to resolve inflammation in coronary artery disease patients.

      Abstract

      Background and aims

      Many coronary artery disease (CAD) patients exhibit chronic low-grade inflammation. Carotenoids are anti-oxidants with potential anti-inflammatory properties. Here, we first assessed relationships between interleukin (IL)-6 and individual carotenoids in plasma from CAD patients. Based on the results, we proceeded to assess anti-inflammatory effects of one carotenoid, lutein, in peripheral blood mononuclear cells (PBMCs) from CAD patients.

      Methods

      Lutein + zeaxanthin (isomers with lutein being dominant), β-cryptoxanthin, lycopene, α- and β-carotene and IL-6 were measured in plasma from 134 patients with stable angina (SA) and 59 patients with acute coronary syndrome. In 42 patients, plasma measurements were also performed 3 months after coronary intervention. PBMCs from SA patients were pre-treated with lutein (1, 5 and 25 μM) for 24 h followed by 24 h incubation ± lipopolysaccharide (LPS). Cell pellets were collected for IL-6, IL-1β and TNF mRNA and intracellular lutein. Cytokine secretion was measured in cell media.

      Results

      Only lutein + zeaxanthin were inversely correlated with IL-6 in SA patients at baseline (r = −0.366, p < 0.001) and follow-up (r = −0.546, p < 0.001). Ex vivo, lutein was taken up by PBMCs from SA patients in a dose- and time-dependent manner. Pre-treatment with lutein dose-dependently lowered LPS-induced secretion of IL-6, IL-1β (p < 0.01) and TNF (p < 0.05), and also reduced IL-6, IL-1β and TNF mRNA expression (p < 0.05).

      Conclusions

      Clinical findings highlighted the inverse association between lutein and IL-6 in CAD patients. Anti-inflammatory effects of lutein in PBMCs from CAD patients were consolidated in ex vivo experiments. Taken together, these results show that lutein has the potential to play a role in resolution of chronic inflammation in CAD patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        Progress and challenges in translating the biology of atherosclerosis.
        Nature. 2011; 473: 317-325
        • Danesh J.
        • Wheeler J.G.
        • Hirschfield G.M.
        • Eda S.
        • Eiriksdottir G.
        • Rumley A.
        • et al.
        C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.
        N. Engl. J. Med. 2004; 350: 1387-1397
        • Kaptoge S.
        • Seshasai S.R.
        • Gao P.
        • Freitag D.F.
        • Butterworth A.S.
        • Borglykke A.
        • et al.
        Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis.
        Eur. Heart J. 2014; 35: 578-589
        • Garcia-Arellano A.
        • Ramallal R.
        • Ruiz-Canela M.
        • Salas-Salvado J.
        • Corella D.
        • Shivappa N.
        • et al.
        Dietary inflammatory index and incidence of cardiovascular disease in the PREDIMED study.
        Nutrients. 2015; 7: 4124-4138
        • Salas-Salvado J.
        • Garcia-Arellano A.
        • Estruch R.
        • Marquez-Sandoval F.
        • Corella D.
        • Fiol M.
        • et al.
        Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease.
        Eur. J. Clin. Nutr. 2008; 62: 651-659
        • Howard A.N.
        • Thurnham D.I.
        Lutein and atherosclerosis: belfast versus toulouse revisited.
        Med. Hypotheses. 2017; 98: 63-68
        • Pietro N.D.
        • Tomo P.D.
        • Pandolfi A.
        Carotenoids in cardiovascular disease prevention.
        JSM Atheroscler. 2016; 1: 1002
        • Ford E.S.
        • Liu S.
        • Mannino D.M.
        • Giles W.H.
        • Smith S.J.
        C-reactive protein concentration and concentrations of blood vitamins, carotenoids, and selenium among United States adults.
        Eur. J. Clin. Nutr. 2003; 57: 1157-1163
        • Gruber M.
        • Chappell R.
        • Millen A.
        • LaRowe T.
        • Moeller S.M.
        • Iannaccone A.
        • et al.
        Correlates of serum lutein + zeaxanthin: findings from the third national health and nutrition examination survey.
        J. Nutr. 2004; 134: 2387-2394
        • Hozawa A.
        • Jacobs Jr., D.R.
        • Steffes M.W.
        • Gross M.D.
        • Steffen L.M.
        • Lee D.H.
        Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: the Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study.
        Clin. Chem. 2007; 53: 447-455
        • Kritchevsky S.B.
        • Bush A.J.
        • Pahor M.
        • Gross M.D.
        Serum carotenoids and markers of inflammation in nonsmokers.
        Am. J. Epidemiol. 2000; 152: 1065-1071
        • Thurnham D.I.
        • Northrop-Clewes C.A.
        Inflammation and biomarkers of micronutrient status.
        Curr. Opin. Clin. Nutr. Metab. Care. 2016; 19: 458-463
        • Rowley K.
        • Walker K.Z.
        • Cohen J.
        • Jenkins A.J.
        • O'Neal D.
        • Su Q.
        • et al.
        Inflammation and vascular endothelial activation in an Aboriginal population: relationships to coronary disease risk factors and nutritional markers.
        Med. J. Aust. 2003; 178: 495-500
        • Ryden M.
        • Garvin P.
        • Kristenson M.
        • Leanderson P.
        • Ernerudh J.
        • Jonasson L.
        Provitamin A carotenoids are independently associated with matrix metalloproteinase-9 in plasma samples from a general population.
        J. Intern Med. 2012; 272: 371-384
        • Suzuki K.
        • Inoue T.
        • Hashimoto S.
        • Ochiai J.
        • Kusuhara Y.
        • Ito Y.
        • et al.
        Association of serum carotenoids with high molecular weight adiponectin and inflammation markers among Japanese subjects.
        Clin. Chim. Acta. 2010; 411: 1330-1334
        • van Herpen-Broekmans W.M.
        • Klopping-Ketelaars I.A.
        • Bots M.L.
        • Kluft C.
        • Princen H.
        • Hendriks H.F.
        • et al.
        Serum carotenoids and vitamins in relation to markers of endothelial function and inflammation.
        Eur. J. Epidemiol. 2004; 19: 915-921
        • Wang L.
        • Gaziano J.M.
        • Norkus E.P.
        • Buring J.E.
        • Sesso H.D.
        Associations of plasma carotenoids with risk factors and biomarkers related to cardiovascular disease in middle-aged and older women.
        Am. J. Clin. Nutr. 2008; 88: 747-754
        • Handelman G.J.
        • Nightingale Z.D.
        • Lichtenstein A.H.
        • Schaefer E.J.
        • Blumberg J.B.
        Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk.
        Am. J. Clin. Nutr. 1999; 70: 247-251
        • Brevik A.
        • Andersen L.F.
        • Karlsen A.
        • Trygg K.U.
        • Blomhoff R.
        • Drevon C.A.
        Six carotenoids in plasma used to assess recommended intake of fruits and vegetables in a controlled feeding study.
        Eur. J. Clin. Nutr. 2004; 58: 1166-1173
        • Dwyer J.H.
        • Navab M.
        • Dwyer K.M.
        • Hassan K.
        • Sun P.
        • Shircore A.
        • et al.
        Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study.
        Circulation. 2001; 103: 2922-2927
        • Dwyer J.H.
        • Paul-Labrador M.J.
        • Fan J.
        • Shircore A.M.
        • Merz C.N.
        • Dwyer K.M.
        Progression of carotid intima-media thickness and plasma antioxidants: the Los Angeles Atherosclerosis Study.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 313-319
        • Iribarren C.
        • Folsom A.R.
        • Jacobs Jr., D.R.
        • Gross M.D.
        • Belcher J.D.
        • Eckfeldt J.H.
        Association of serum vitamin levels, LDL susceptibility to oxidation, and autoantibodies against MDA-LDL with carotid atherosclerosis. A case-control study. The ARIC Study Investigators. Atherosclerosis Risk in Communities.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 1171-1177
        • Zou Z.
        • Xu X.
        • Huang Y.
        • Xiao X.
        • Ma L.
        • Sun T.
        • et al.
        High serum level of lutein may be protective against early atherosclerosis: the Beijing atherosclerosis study.
        Atherosclerosis. 2011; 219: 789-793
        • Leermakers E.T.
        • Darweesh S.K.
        • Baena C.P.
        • Moreira E.M.
        • Melo van Lent D.
        • Tielemans M.J.
        • et al.
        The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis.
        Am. J. Clin. Nutr. 2016; 103: 481-494
        • Kim J.E.
        • Leite J.O.
        • DeOgburn R.
        • Smyth J.A.
        • Clark R.M.
        • Fernandez M.L.
        A lutein-enriched diet prevents cholesterol accumulation and decreases oxidized LDL and inflammatory cytokines in the aorta of Guinea pigs.
        J. Nutr. 2011; 141: 1458-1463
        • Han H.
        • Cui W.
        • Wang L.
        • Xiong Y.
        • Liu L.
        • Sun X.
        • et al.
        Lutein prevents high fat diet-induced atherosclerosis in ApoE-deficient mice by inhibiting NADPH oxidase and increasing PPAR expression.
        Lipids. 2015; 50: 261-273
        • Li S.Y.
        • Fung F.K.
        • Fu Z.J.
        • Wong D.
        • Chan H.H.
        • Lo A.C.
        Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies.
        Invest Ophthalmol. Vis. Sci. 2012; 53: 5976-5984
        • Izumi-Nagai K.
        • Nagai N.
        • Ohgami K.
        • Satofuka S.
        • Ozawa Y.
        • Tsubota K.
        • et al.
        Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 2555-2562
        • Tian Y.
        • Kijlstra A.
        • van der Veen R.L.
        • Makridaki M.
        • Murray I.J.
        • Berendschot T.T.
        The effect of lutein supplementation on blood plasma levels of complement factor D, C5a and C3d.
        PLoS One. 2013; 8: e73387
        • Tian Y.
        • Kijlstra A.
        • van der Veen R.L.
        • Makridaki M.
        • Murray I.J.
        • Berendschot T.T.
        Lutein supplementation leads to decreased soluble complement membrane attack complex sC5b-9 plasma levels.
        Acta Ophthalmol. 2015; 93: 141-145
        • Lidebjer C.
        • Leanderson P.
        • Ernerudh J.
        • Jonasson L.
        Low plasma levels of oxygenated carotenoids in patients with coronary artery disease.
        Nutr. Metab. Cardiovasc Dis. 2007; 17: 448-456
        • Koh W.P.
        • Yuan J.M.
        • Wang R.
        • Lee Y.P.
        • Lee B.L.
        • Yu M.C.
        • et al.
        Plasma carotenoids and risk of acute myocardial infarction in the Singapore Chinese Health Study.
        Nutr. Metab. Cardiovasc Dis. 2011; 21: 685-690
        • Xu X.
        • Wang Y.
        • Constantinou A.I.
        • Stacewicz-Sapuntzakis M.
        • Bowen P.E.
        • van Breemen R.B.
        Solubilization and stabilization of carotenoids using micelles: delivery of lycopene to cells in culture.
        Lipids. 1999; 34: 1031-1036
        • Walston J.
        • Xue Q.
        • Semba R.D.
        • Ferrucci L.
        • Cappola A.R.
        • Ricks M.
        • et al.
        Serum antioxidants, inflammation, and total mortality in older women.
        Am. J. Epidemiol. 2006; 163: 18-26
        • Voleti B.
        • Agrawal A.
        Statins and nitric oxide reduce C-reactive protein production while inflammatory conditions persist.
        Mol. Immunol. 2006; 43: 891-896
        • Arnaud C.
        • Burger F.
        • Steffens S.
        • Veillard N.R.
        • Nguyen T.H.
        • Trono D.
        • et al.
        Statins reduce interleukin-6-induced C-reactive protein in human hepatocytes: new evidence for direct antiinflammatory effects of statins.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1231-1236
        • Nilsson L.
        • Eriksson P.
        • Cherfan P.
        • Jonasson L.
        Effects of simvastatin on proinflammatory cytokines and matrix metalloproteinases in hypercholesterolemic individuals.
        Inflammation. 2011; 34: 225-230
        • Wiklund O.
        • Mattsson-Hulten L.
        • Hurt-Camejo E.
        • Oscarsson J.
        Effects of simvastatin and atorvastatin on inflammation markers in plasma.
        J. Intern Med. 2002; 251: 338-347
        • Lyngdoh T.
        • Vollenweider P.
        • Waeber G.
        • Marques-Vidal P.
        Association of statins with inflammatory cytokines: a population-based Colaus study.
        Atherosclerosis. 2011; 219: 253-258
        • Kim J.H.
        • Na H.J.
        • Kim C.K.
        • Kim J.Y.
        • Ha K.S.
        • Lee H.
        • et al.
        The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: role of H(2)O(2) in NF-kappaB activation.
        Free Radic. Biol. Med. 2008; 45: 885-896
        • Krishnaswamy R.
        • Devaraj S.N.
        • Padma V.V.
        Lutein protects HT-29 cells against Deoxynivalenol-induced oxidative stress and apoptosis: prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and Cyclo-Oxygenase-2 expression.
        Free Radic. Biol. Med. 2010; 49: 50-60
        • Jin X.H.
        • Ohgami K.
        • Shiratori K.
        • Suzuki Y.
        • Hirano T.
        • Koyama Y.
        • et al.
        Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats.
        Invest Ophthalmol. Vis. Sci. 2006; 47: 2562-2568