Advertisement

Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention

      Highlights

      • Cardiovascular disease (CVD) and cancer are leading causes of mortality and morbidity worldwide.
      • CVD and cancer have common risk factors and shared genetics and molecular mechanisms that are central to their pathogenesis.
      • The shared pathways of CVD and cancer are potential targets for development of novel drugs for joint pharmacologic prevention of CVD and cancer.
      • A growing body of evidence supports a role for aspirin, statins, ACE inhibitors/ARBs, metformin, and TZDs in cancer prevention.
      • Both pharmacologic and non-pharmacologic preventive programs should be directed jointly at CVD and cancer.

      Abstract

      Cardiovascular disease (CVD) and cancer are leading causes of mortality and morbidity worldwide. Strategies to improve their treatment and prevention are global priorities and major focus of World Health Organization's joint prevention programs. Emerging evidence suggests that modifiable risk factors including diet, sedentary lifestyle, obesity and tobacco use are central to the pathogenesis of both diseases and are reflected in common genetic, cellular, and signaling mechanisms. Understanding this important biological overlap is critical and may help identify novel therapeutic and preventative strategies for both disorders. In this review, we will discuss the shared genetic and molecular factors central to CVD and cancer and how the strategies commonly used for the prevention of atherosclerotic vascular disease can be applied to cancer prevention.

      Graphical abstract

      Abbreviations:

      CVD (cardiovascular disease), CAD (coronary artery disease), T2DM (type II diabetes mellitus), ACEIs/ARBs (angiotensin converting enzyme inhibitors/angiotensin receptor blockers), RAAS (renin-angiotensin-aldosterone system), VSMC (vascular smooth muscle cell), AMPK (adenosine 5′ monophosphate-activated protein kinase), PPAR-γ (peroxisome proliferator-activated receptor-γ), PAI-1 (plasminogen activator inhibitor-1), TZDs (thiazolidinediones), WHO (World Health Organization)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. (In, Geneva)Global Status Report on Noncommunicable Diseases 2014. 2014
        • Lipscomb J.
        • Gotay C.C.
        • Snyder C.F.
        Patient-reported outcomes in cancer: a review of recent research and policy initiatives.
        CA Cancer J. Clin. 2007; 57: 278-300
        • Dickens C.
        • Cherrington A.
        • McGowan L.
        Depression and health-related quality of life in people with coronary heart disease: a systematic review.
        Eur. J. Cardiovasc. Nurs. 2012; 11: 265-275
        • Daar A.S.
        • Singer P.A.
        • Persad D.L.
        • et al.
        Grand challenges in chronic non-communicable diseases.
        Nature. 2007; 450: 494-496
      2. (In, Geneva)The World Health Report 2002-Reducing Risks, Promoting Healthy Life. 2002
      3. (In, New York)Political Declaration of the High-level Meeting of the General Assembly on the Prevention and Control of Non-communicable Diseases. 2011
        • Lee D.K.
        • Nathan Grantham R.
        • Trachte A.L.
        • et al.
        Activation of the canonical Wnt/beta-catenin pathway enhances monocyte adhesion to endothelial cells.
        Biochem. Biophys. Res. Commun. 2006; 347: 109-116
        • Deshayes F.
        • Nahmias C.
        Angiotensin receptors: a new role in cancer?.
        Trends Endocrinol. Metab. TEM. 2005; 16: 293-299
        • Mc Menamin U.C.
        • Murray L.J.
        • Cantwell M.M.
        • et al.
        Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in cancer progression and survival: a systematic review.
        Cancer Causes Control CCC. 2012; 23: 221-230
        • Rothwell P.M.
        • Price J.F.
        • Fowkes F.G.
        • et al.
        Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials.
        Lancet (Lond. Engl.). 2012; 379: 1602-1612
        • Attoub S.
        • Gaben A.M.
        • Al-Salam S.
        • et al.
        Captopril as a potential inhibitor of lung tumor growth and metastasis.
        Ann. N. Y. Acad. Sci. 2008; 1138: 65-72
        • Olijhoek J.K.
        • van der Graaf Y.
        • Banga J.D.
        • et al.
        The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm.
        Eur. Heart J. 2004; 25: 342-348
        • Pateras I.
        • Giaginis C.
        • Tsigris C.
        • et al.
        NF-kappaB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links.
        Expert Opin. Ther. Targets. 2014; 18: 1089-1101
        • Vink A.
        • Schoneveld A.H.
        • Lamers D.
        • et al.
        HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages.
        Atherosclerosis. 2007; 195: e69-75
        • Agrawal S.
        • Febbraio M.
        • Podrez E.
        • et al.
        Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development.
        Circulation. 2007; 115: 2939-2947
        • Balkwill F.
        • Mantovani A.
        Inflammation and cancer: back to Virchow?.
        Lancet (Lond. Engl.). 2001; 357: 539-545
        • Kundu J.K.
        • Surh Y.J.
        Emerging avenues linking inflammation and cancer.
        Free Radic. Biol. Med. 2012; 52: 2013-2037
        • Hussain S.P.
        • Harris C.C.
        Inflammation and cancer: an ancient link with novel potentials.
        Int. J. Cancer. J. Int. du Cancer. 2007; 121: 2373-2380
        • Colotta F.
        • Allavena P.
        • Sica A.
        • et al.
        Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability.
        Carcinogenesis. 2009; 30: 1073-1081
        • Wu Y.
        • Antony S.
        • Meitzler J.L.
        • et al.
        Molecular mechanisms underlying chronic inflammation-associated cancers.
        Cancer Lett. 2014; 345: 164-173
        • Lu H.
        • Ouyang W.
        • Huang C.
        Inflammation, a key event in cancer development.
        Mol. Cancer Res. MCR. 2006; 4: 221-233
        • Morrow V.A.
        • Foufelle F.
        • Connell J.M.
        • et al.
        Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells.
        J. Biol. Chem. 2003; 278: 31629-31639
        • Cabarcas S.M.
        • Hurt E.M.
        • Farrar W.L.
        Defining the molecular nexus of cancer, type 2 diabetes and cardiovascular disease.
        Curr. Mol. Med. 2010; 10: 744-755
        • Ewart M.A.
        • Kennedy S.
        AMPK and vasculoprotection.
        Pharmacol. Ther. 2011; 131: 242-253
        • Chen B.
        • Li J.
        • Zhu H.
        AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-kappaB/LOX-1 pathway.
        Vasc. Pharmacol. 2015; 85: 1-10
        • Motoshima H.
        • Goldstein B.J.
        • Igata M.
        • et al.
        AMPK and cell proliferation–AMPK as a therapeutic target for atherosclerosis and cancer.
        J. Physiol. 2006; 574: 63-71
        • Li Y.
        • Xu S.
        • Mihaylova M.M.
        • et al.
        AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice.
        Cell Metab. 2011; 13: 376-388
        • Giri S.
        • Nath N.
        • Smith B.
        • et al.
        5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase.
        J. Neurosci. Off. J. Soc. Neurosci. 2004; 24: 479-487
        • Swinnen J.V.
        • Beckers A.
        • Brusselmans K.
        • et al.
        Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype.
        Cancer Res. 2005; 65: 2441-2448
        • Li J.
        • Jiang P.
        • Robinson M.
        • et al.
        AMPK-beta1 subunit is a p53-independent stress responsive protein that inhibits tumor cell growth upon forced expression.
        Carcinogenesis. 2003; 24: 827-834
        • Meisse D.
        • Van de Casteele M.
        • Beauloye C.
        • et al.
        Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells.
        FEBS Lett. 2002; 526: 38-42
        • Saitoh M.
        • Nagai K.
        • Nakagawa K.
        • et al.
        Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase.
        Biochem. Pharmacol. 2004; 67: 2005-2011
        • Xiang X.
        • Saha A.K.
        • Wen R.
        • et al.
        AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms.
        Biochem. Biophys. Res. Commun. 2004; 321: 161-167
        • Wang W.
        • Guan K.L.
        AMP-activated protein kinase and cancer.
        Acta Physiol. (Oxf. Engl.). 2009; 196: 55-63
        • Kim J.
        • Yang G.
        • Kim Y.
        • et al.
        AMPK activators: mechanisms of action and physiological activities.
        Exp. Mol. Med. 2016; 48: e224
        • Evans J.M.M.
        • Donnelly L.A.
        • Emslie-Smith A.M.
        • et al.
        Metformin and reduced risk of cancer in diabetic patients.
        BMJ (Clin. Res. Ed.). 2005; 330: 1304-1305
        • Decensi A.
        • Puntoni M.
        • Goodwin P.
        • et al.
        Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis.
        Cancer Prev. Res. (Phila. Pa.). 2010; 3: 1451-1461
        • Singh S.
        • Singh P.P.
        • Singh A.G.
        • et al.
        Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis.
        Am. J. Gastroenterol. 2013; 108 (quiz 892): 881-891
        • Shackelford D.B.
        • Abt E.
        • Gerken L.
        • et al.
        LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin.
        Cancer Cell. 2013; 23: 143-158
        • Chen Z.
        • Ishibashi S.
        • Perrey S.
        • et al.
        Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL.
        Arterioscler. Thromb. Vasc. Biol. 2001; 21: 372-377
        • Nakaya H.
        • Summers B.D.
        • Nicholson A.C.
        • et al.
        Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone.
        Am. J. Pathol. 2009; 174: 2007-2014
        • Wang N.
        • Yin R.
        • Liu Y.
        • et al.
        Role of peroxisome proliferator-activated receptor-gamma in atherosclerosis: an update.
        Circ. J. Off. J. Jpn. Circ. Soc. 2011; 75: 528-535
        • Ivanova E.A.
        • Parolari A.
        • Myasoedova V.
        • et al.
        Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery.
        J. Cardiol. 2015; 66: 271-278
        • Sugawara A.
        • Takeuchi K.
        • Uruno A.
        • et al.
        Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells.
        Endocrinology. 2001; 142: 3125-3134
        • Sabatino L.
        • Pancione M.
        • Votino C.
        • et al.
        Emerging role of the beta-catenin-PPARgamma axis in the pathogenesis of colorectal cancer.
        World J. Gastroenterol. 2014; 20: 7137-7151
        • Sikka S.
        • Chen L.
        • Sethi G.
        • et al.
        Targeting PPARgamma signaling cascade for the prevention and treatment of prostate cancer.
        PPAR Res. 2012; 2012: 968040
        • Yan S.
        • Yang X.
        • Chen T.
        • et al.
        The PPARgamma agonist Troglitazone induces autophagy, apoptosis and necroptosis in bladder cancer cells.
        Cancer Gene Ther. 2014; 21: 188-193
        • Conzen S.D.
        Minireview: nuclear receptors and breast cancer.
        Mol. Endocrinol. (Baltim. Md.). 2008; 22: 2215-2228
        • Liu J.J.
        • Dai X.J.
        • Xu Y.
        • et al.
        Inhibition of lymphoma cell proliferation by peroxisomal proliferator-activated receptor-gamma ligands via Wnt signaling pathway.
        Cell Biochem. Biophys. 2012; 62: 19-27
        • Pollak M.
        The insulin and insulin-like growth factor receptor family in neoplasia: an update.
        Nat. Rev. Cancer. 2012; 12: 159-169
        • Mughal A.
        • Kumar D.
        • Vikram A.
        Effects of Thiazolidinediones on metabolism and cancer: relative influence of PPARgamma and IGF-1 signaling.
        Eur. J. Pharmacol. 2015; 768: 217-225
        • Denning G.M.
        • Stoll L.L.
        Peroxisome proliferator-activated receptors: potential therapeutic targets in lung disease?.
        Pediatr. Pulmonol. 2006; 41: 23-34
        • Monami M.
        • Dicembrini I.
        • Mannucci E.
        Thiazolidinediones and cancer: results of a meta-analysis of randomized clinical trials.
        Acta Diabetol. 2014; 51: 91-101
        • Geng D-f
        • Jin D-m
        • Wu W.
        • et al.
        Effect of thiazolidinediones on in-stent restenosis in patients after coronary stenting: a meta-analysis of randomized controlled trials.
        Atherosclerosis. 2009; 202: 521-528
        • Dormandy J.A.
        • Charbonnel B.
        • Eckland D.J.
        • et al.
        Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial.
        Lancet (Lond. Engl.). 2005; 366: 1279-1289
        • Erdmann E.
        • Dormandy J.A.
        • Charbonnel B.
        • et al.
        The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study.
        J. Am. Coll. Cardiol. 2007; 49: 1772-1780
        • Lincoff A.M.
        • Wolski K.
        • Nicholls S.J.
        • et al.
        Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials.
        Jama. 2007; 298: 1180-1188
        • Wilcox R.
        • Bousser M.G.
        • Betteridge D.J.
        • et al.
        Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective pioglitAzone Clinical Trial in macroVascular Events 04).
        Stroke. 2007; 38: 865-873
        • Paredes S.
        • Matta-Coelho C.
        • Monteiro A.M.
        • et al.
        Cardiovascular safety of type 2 diabetes medications: review of existing literature and clinical implications.
        Horm. (Athens, Greece). 2016; 15: 170-185
        • Schneider J.G.
        • Yang Z.
        • Chakravarthy M.V.
        • et al.
        Macrophage fatty-acid synthase deficiency decreases diet-induced atherosclerosis.
        J. Biol. Chem. 2010; 285: 23398-23409
        • Wu D.
        • Liu J.
        • Pang X.
        • et al.
        Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-alpha.
        Int. J. Mol. Med. 2014; 34: 1706-1712
        • Mullen G.E.
        • Yet L.
        Progress in the development of fatty acid synthase inhibitors as anticancer targets.
        Bioorg. Med. Chem. Lett. 2015; 25: 4363-4369
        • Fiorentino M.
        • Zadra G.
        • Palescandolo E.
        • et al.
        Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer.
        Lab. Investig. J. Tech. Methods Pathol. 2008; 88: 1340-1348
        • Bandyopadhyay S.
        • Pai S.K.
        • Watabe M.
        • et al.
        FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis.
        Oncogene. 2005; 24: 5389-5395
        • Pizer E.S.
        • Jackisch C.
        • Wood F.D.
        • et al.
        Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells.
        Cancer Res. 1996; 56: 2745-2747
        • Bian Y.
        • Yu Y.
        • Wang S.
        • et al.
        Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer.
        Biochem. Biophys. Res. Commun. 2015; 463: 612-617
        • Ploplis V.A.
        Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease.
        Curr. Drug Targets. 2011; 12: 1782-1789
        • Iwaki T.
        • Urano T.
        • Umemura K.
        PAI-1, progress in understanding the clinical problem and its aetiology.
        Br. J. Haematol. 2012; 157: 291-298
        • Hursting S.D.
        • Hursting M.J.
        Growth signals, inflammation, and vascular perturbations: mechanistic links between obesity, metabolic syndrome, and cancer.
        Arterioscler. Thromb. Vasc. Biol. 2012; 32: 1766-1770
        • Fang H.
        • Placencio V.R.
        • DeClerck Y.A.
        Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic function.
        J. Natl. Cancer Inst. 2012; 104: 1470-1484
        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • et al.
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet (Lond. Engl.). 2004; 364: 937-952
        • Renehan A.G.
        • Tyson M.
        • Egger M.
        • et al.
        Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies.
        Lancet (Lond. Engl.). 2008; 371: 569-578
        • Sjostrom L.
        Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery.
        J. Intern. Med. 2013; 273: 219-234
        • Golpaie A.
        • Tajik N.
        • Masoudkabir F.
        • et al.
        Short-term effect of weight loss through restrictive bariatric surgery on serum levels of vaspin in morbidly obese subjects.
        Eur. Cytokine Netw. 2011; 22: 181-186
        • Karbaschian Z.
        • Hosseinzadeh-Attar M.J.
        • Giahi L.
        • et al.
        Portal and systemic levels of visfatin in morbidly obese subjects undergoing bariatric surgery.
        Endocrine. 2013; 44: 114-118
        • Tajik N.
        • Golpaie A.
        • Keshavarz S.A.
        • et al.
        Decreased plasma levels of ceruloplasmin after diet-induced weight loss in obese women.
        J. Endocrinol. Investig. 2012; 35: 566-569
        • Tajik N.
        • Keshavarz S.A.
        • Masoudkabir F.
        • et al.
        Effect of diet-induced weight loss on inflammatory cytokines in obese women.
        J. Endocrinol. Investig. 2013; 36: 211-215
        • Ando S.
        • Catalano S.
        The multifactorial role of leptin in driving the breast cancer microenvironment, Nature reviews.
        Endocrinology. 2011; 8: 263-275
        • Garofalo C.
        • Surmacz E.
        Leptin and cancer.
        J. Cell. Physiol. 2006; 207: 12-22
        • Ntaios G.
        • Gatselis N.K.
        • Makaritsis K.
        • et al.
        Adipokines as mediators of endothelial function and atherosclerosis.
        Atherosclerosis. 2013; 227: 216-221
        • Kallen C.B.
        • Lazar M.A.
        Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes.
        Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 5793-5796
        • Giaginis C.
        • Tsantili-Kakoulidou A.
        • Theocharis S.
        Peroxisome proliferator-activated receptor-gamma ligands: potential pharmacological agents for targeting the angiogenesis signaling cascade in cancer.
        PPAR Res. 2008; 2008: 431763
        • MacDonald B.T.
        • Tamai K.
        • He X.
        Wnt/beta-catenin signaling: components, mechanisms, and diseases.
        Dev. Cell. 2009; 17: 9-26
        • Garcia-Jimenez C.
        • Garcia-Martinez J.M.
        • Chocarro-Calvo A.
        • et al.
        A new link between diabetes and cancer: enhanced WNT/beta-catenin signaling by high glucose.
        J. Mol. Endocrinol. 2014; 52: R51-R66
        • Srivastava R.
        • Zhang J.
        • Go G.W.
        • et al.
        Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease.
        Cell Rep. 2015; 13: 746-759
        • Keramati A.R.
        • Singh R.
        • Lin A.
        • et al.
        Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 1914-1918
        • Mani A.
        • Radhakrishnan J.
        • Wang H.
        • et al.
        LRP6 mutation in a family with early coronary disease and metabolic risk factors.
        Science. 2007; 315: 1278-1282
        • Christman 2nd, M.A.
        • Goetz D.J.
        • Dickerson E.
        • et al.
        Wnt5a is expressed in murine and human atherosclerotic lesions.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 294: H2864-H2870
        • Kim J.
        • Kim J.
        • Kim D.W.
        • et al.
        Wnt5a induces endothelial inflammation via beta-catenin-independent signaling.
        J. Immunol. (Baltim. Md. 1950). 2010; 185: 1274-1282
        • Shao J.S.
        • Cheng S.L.
        • Pingsterhaus J.M.
        • et al.
        Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals.
        J. Clin. Investig. 2005; 115: 1210-1220
        • Marinou K.
        • Christodoulides C.
        • Antoniades C.
        • et al.
        Wnt signaling in cardiovascular physiology.
        Trends Endocrinol. Metab. TEM. 2012; 23: 628-636
        • Hirabayashi S.
        • Baranski T.J.
        • Cagan R.L.
        Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling.
        Cell. 2013; 154: 664-675
        • Liu W.
        • Mani S.
        • Davis N.R.
        • et al.
        Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance.
        Circ. Res. 2008; 103: 1280-1288
        • Go G.W.
        • Mani A.
        Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis.
        Yale J. Biol. Med. 2012; 85: 19-28
        • Liu W.
        • Singh R.
        • Choi C.S.
        • et al.
        Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure.
        J. Biol. Chem. 2012; 287: 7213-7223
        • Ye Z.J.
        • Go G.W.
        • Singh R.
        • et al.
        LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake.
        J. Biol. Chem. 2012; 287: 1335-1344
        • Singh R.
        • De Aguiar R.B.
        • Naik S.
        • et al.
        LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans.
        Cell Metab. 2013; 17: 197-209
        • Singh R.
        • Smith E.
        • Fathzadeh M.
        • et al.
        Rare nonconservative LRP6 mutations are associated with metabolic syndrome.
        Hum. Mutat. 2013; 34: 1221-1225
        • Go G.W.
        • Srivastava R.
        • Hernandez-Ono A.
        • et al.
        The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue.
        Cell Metab. 2014; 19: 209-220
        • Song K.
        • Wang S.
        • Mani M.
        • et al.
        Wnt signaling, de novo lipogenesis, adipogenesis and ectopic fat.
        Oncotarget. 2014; 5: 11000-11003
        • Wang S.
        • Song K.
        • Srivastava R.
        • et al.
        Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a.
        FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015; 29: 3436-3445
        • Li Y.
        • Lu W.
        • He X.
        • et al.
        LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering beta-catenin subcellular distribution.
        Oncogene. 2004; 23: 9129-9135
        • Tung E.K.
        • Wong B.Y.
        • Yau T.O.
        • et al.
        Upregulation of the Wnt co-receptor LRP6 promotes hepatocarcinogenesis and enhances cell invasion.
        PLoS One. 2012; 7: e36565
        • Liu C.C.
        • Prior J.
        • Piwnica-Worms D.
        • et al.
        LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 5136-5141
        • Zhang J.
        • Li Y.
        • Liu Q.
        • et al.
        Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: implication for breast cancer tumorigenesis.
        Oncogene. 2010; 29: 539-549
        • Lemieux E.
        • Cagnol S.
        • Beaudry K.
        • et al.
        Oncogenic KRAS signalling promotes the Wnt/beta-catenin pathway through LRP6 in colorectal cancer.
        Oncogene. 2015; 34: 4914-4927
        • Muendlein A.
        • Saely C.H.
        • Geller-Rhomberg S.
        • et al.
        Single nucleotide polymorphisms of TCF7L2 are linked to diabetic coronary atherosclerosis.
        PLoS One. 2011; 6: e17978
        • Wang J.
        • Hu F.
        • Feng T.
        • et al.
        Meta-analysis of associations between TCF7L2 polymorphisms and risk of type 2 diabetes mellitus in the Chinese population.
        BMC Med. Genet. 2013; 14: 8
        • Tong Y.
        • Lin Y.
        • Zhang Y.
        • et al.
        Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis.
        BMC Med. Genet. 2009; 10: 15
        • Cauchi S.
        • El Achhab Y.
        • Choquet H.
        • et al.
        TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis.
        J. Mol. Med. (Berl. Ger.). 2007; 85: 777-782
        • Wang F.
        • Jiang L.
        • Li J.
        • et al.
        Association between TCF7L2 polymorphisms and breast cancer susceptibility: a meta-analysis.
        Int. J. Clin. Exp. Med. 2015; 8: 9355-9361
        • Folsom A.R.
        • Pankow J.S.
        • Peacock J.M.
        • et al.
        Variation in TCF7L2 and increased risk of colon cancer: the Aherosclerosis Risk in Communities (ARIC) Study.
        Diabetes Care. 2008; 31: 905-909
        • Domenyuk V.P.
        • Litovkin K.V.
        • Verbitskaya T.G.
        • et al.
        Identification of new DNA markers of endometrial cancer in patients from the Ukrainian population.
        Exp. Oncol. 2007; 29: 152-155
        • Connor A.E.
        • Baumgartner R.N.
        • Baumgartner K.B.
        • et al.
        Associations between TCF7L2 polymorphisms and risk of breast cancer among Hispanic and non-Hispanic white women: the Breast Cancer Health Disparities Study.
        Breast Cancer Res. Treat. 2012; 136: 593-602
        • Chen C.S.
        • Huang C.Y.
        • Huang S.P.
        • et al.
        Genetic interaction analysis of TCF7L2 for biochemical recurrence after radical prostatectomy in localized prostate cancer.
        Int. J. Med. Sci. 2015; 12: 243-247
        • Burwinkel B.
        • Shanmugam K.S.
        • Hemminki K.
        • et al.
        Transcription factor 7-like 2 (TCF7L2) variant is associated with familial breast cancer risk: a case-control study.
        BMC Cancer. 2006; 6: 268
        • Tejedor F.
        • Zhu X.R.
        • Kaltenbach E.
        • et al.
        minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila.
        Neuron. 1995; 14: 287-301
        • Yang E.J.
        • Ahn Y.S.
        • Chung K.C.
        Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells.
        J. Biol. Chem. 2001; 276: 39819-39824
        • Deng X.
        • Friedman E.
        Mirk kinase inhibition blocks the in vivo growth of pancreatic cancer cells.
        Genes & Cancer. 2014; 5: 337-347
        • Friedman E.
        Mirk/dyrk1B kinase in ovarian cancer.
        Int. J. Mol. Sci. 2013; 14: 5560-5575
        • Gao J.
        • Zheng Z.
        • Rawal B.
        • et al.
        Mirk/Dyrk1B, a novel therapeutic target, mediates cell survival in non-small cell lung cancer cells.
        Cancer Biol. Ther. 2009; 8: 1671-1679
        • Keramati A.R.
        • Fathzadeh M.
        • Go G.W.
        • et al.
        A form of the metabolic syndrome associated with mutations in DYRK1B.
        N. Engl. J. Med. 2014; 370: 1909-1919
        • Li Y.Y.
        Methylenetetrahydrofolate reductase C677T gene polymorphism and coronary artery disease in a Chinese Han population: a meta-analysis.
        Metab. Clin. Exp. 2012; 61: 846-852
        • Hou X.
        • Chen X.
        • Shi J.
        Genetic polymorphism of MTHFR C677T and premature coronary artery disease susceptibility: a meta-analysis.
        Gene. 2015; 565: 39-44
        • Xuan C.
        • Bai X.Y.
        • Gao G.
        • et al.
        Association between polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T and risk of myocardial infarction: a meta-analysis for 8,140 cases and 10,522 controls.
        Arch. Med. Res. 2011; 42: 677-685
        • Thambyrajah J.
        • Townend J.N.
        Homocysteine and atherothrombosis–mechanisms for injury.
        Eur. Heart J. 2000; 21: 967-974
        • Liew S.C.
        • Gupta E.D.
        Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases.
        Eur. J. Med. Genet. 2015; 58: 1-10
        • Khandanpour N.
        • Willis G.
        • Meyer F.J.
        • et al.
        Peripheral arterial disease and methylenetetrahydrofolate reductase (MTHFR) C677T mutations: a case-control study and meta-analysis.
        J. Vasc. Surg. 2009; 49: 711-718
        • Kumar A.
        • Kumar P.
        • Prasad M.
        • et al.
        Association of C677T polymorphism in the methylenetetrahydrofolate reductase gene (MTHFR gene) with ischemic stroke: a meta-analysis.
        Neurol. Res. 2015; 37: 568-577
        • Zhu X.Y.
        • Hou R.Y.
        • Pan X.D.
        • et al.
        Association between the methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and ischemic stroke in the Chinese population: a meta-analysis.
        Int. J. Neurosci. 2015; 125: 885-894
        • Gao S.
        • Li H.
        • Xiao H.
        • et al.
        Association of MTHFR 677T variant allele with risk of intracerebral haemorrhage: a meta-analysis.
        J. Neurol. Sci. 2012; 323: 40-45
        • Kang S.
        • Zhao X.
        • Liu L.
        • et al.
        Association of the C677T polymorphism in the MTHFR gene with hemorrhagic stroke: a meta-analysis.
        Genet. Test. Mol. Biomarker. 2013; 17: 412-417
        • Thomas P.
        • Fenech M.
        Methylenetetrahydrofolate reductase, common polymorphisms, and relation to disease.
        Vitam. Horm. 2008; 79: 375-392
        • Montecucco F.
        • Mach F.
        Statins, ACE inhibitors and ARBs in cardiovascular disease, Best practice & research.
        Clin. Endocrinol. Metab. 2009; 23: 389-400
        • Kavalipati N.
        • Shah J.
        • Ramakrishan A.
        • et al.
        Pleiotropic effects of statins.
        Indian J. Endocrinol. Metab. 2015; 19: 554-562
        • Bockorny B.
        • Dasanu C.A.
        HMG-CoA reductase inhibitors as adjuvant treatment for hematologic malignancies: what is the current evidence?.
        Ann. Hematol. 2015; 94: 1-12
        • Simon M.S.
        • Rosenberg C.A.
        • Rodabough R.J.
        • et al.
        Prospective analysis of association between use of statins or other lipid-lowering agents and colorectal cancer risk.
        Ann. Epidemiol. 2012; 22: 17-27
        • Poynter J.N.
        • Gruber S.B.
        • Higgins P.D.
        • et al.
        Statins and the risk of colorectal cancer.
        N. Engl. J. Med. 2005; 352: 2184-2192
        • El-Serag H.B.
        • Johnson M.L.
        • Hachem C.
        • et al.
        Statins are associated with a reduced risk of hepatocellular carcinoma in a large cohort of patients with diabetes.
        Gastroenterology. 2009; 136: 1601-1608
        • Corcos L.
        • Le Jossic-Corcos C.
        Statins: perspectives in cancer therapeutics.
        Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver. 2013; 45: 795-802
        • Shah N.R.
        • Mahmoudi M.
        The role of DNA damage and repair in atherosclerosis: a review.
        J. Mol. Cell. Cardiol. 2015; 86: 147-157
        • Chogtu B.
        • Magazine R.
        • Bairy K.L.
        Statin use and risk of diabetes mellitus.
        World J. Diabetes. 2015; 6: 352-357
        • Sattar N.
        • Preiss D.
        • Murray H.M.
        • et al.
        Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials.
        Lancet (Lond. Engl.). 2010; 375: 735-742
        • Sampson U.K.
        • Linton M.F.
        • Fazio S.
        Are statins diabetogenic?.
        Curr. Opin. Cardiol. 2011; 26: 342-347
        • Lever A.F.
        • Hole D.J.
        • Gillis C.R.
        • et al.
        Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer?.
        Lancet (Lond. Engl.). 1998; 352: 179-184
        • Arafat H.A.
        • Gong Q.
        • Chipitsyna G.
        • et al.
        Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma.
        J. Am. Coll. Surg. 2007; 204 (discussion 1005–1006): 996-1005
        • Reddy M.K.
        • Baskaran K.
        • Molteni A.
        Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells.
        Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. (New York N.Y.). 1995; 210: 221-226
        • Prontera C.
        • Mariani B.
        • Rossi C.
        • et al.
        Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma.
        Int. J. Cancer J. Int. du Cancer. 1999; 81: 761-766
        • Escobar E.
        • Rodriguez-Reyna T.S.
        • Arrieta O.
        • et al.
        Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer.
        Curr. Vasc. Pharmacol. 2004; 2: 385-399
        • Fleming I.
        • Kohlstedt K.
        • Busse R.
        The tissue renin-angiotensin system and intracellular signalling.
        Curr. Opin. Nephrol. Hypertens. 2006; 15: 8-13
        • Ino K.
        • Shibata K.
        • Kajiyama H.
        • et al.
        Manipulating the angiotensin system–new approaches to the treatment of solid tumours.
        Expert Opin. Biol. Ther. 2006; 6: 243-255
        • Taylor G.M.
        • Cook H.T.
        • Sheffield E.A.
        • et al.
        Renin in blood vessels in human pulmonary tumors. An immunohistochemical and biochemical study.
        Am. J. Pathol. 1988; 130: 543-551
        • Yoshiji H.
        • Kuriyama S.
        • Fukui H.
        Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor.
        Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2002; 23: 348-356
        • Parekh A.K.
        • Galloway J.M.
        • Hong Y.
        • et al.
        Aspirin in the secondary prevention of cardiovascular disease.
        N. Engl. J. Med. 2013; 368: 204-205
        • Halvorsen S.
        • Andreotti F.
        • ten Berg J.M.
        • et al.
        Aspirin therapy in primary cardiovascular disease prevention: a position paper of the European Society of Cardiology working group on thrombosis.
        J. Am. Coll. Cardiol. 2014; 64: 319-327
        • Baigent C.
        • Blackwell L.
        • Collins R.
        • et al.
        Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials.
        Lancet (Lond. Engl.). 2009; 373: 1849-1860
        • Chan A.T.
        • Cook N.R.
        Are we ready to recommend aspirin for cancer prevention?.
        Lancet (Lond. Engl.). 2012; 379: 1569-1571
        • Rothwell P.M.
        • Wilson M.
        • Elwin C.E.
        • et al.
        Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials.
        Lancet (Lond. Engl.). 2010; 376: 1741-1750
        • Rothwell P.M.
        • Fowkes F.G.
        • Belch J.F.
        • et al.
        Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials.
        Lancet (Lond. Engl.). 2011; 377: 31-41
        • Alfieri O.
        • Mayosi B.M.
        • Park S.J.
        • et al.
        Exploring unknowns in cardiology, Nature reviews.
        Cardiology. 2014; 11: 664-670