Advertisement

Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology

      Highlights

      • Cardiovascular system-associated fat plays an important role in atherosclerosis.
      • Adipose tissue is the site of chronic inflammatory process.
      • Imaging techniques to study different types of cardiac obesity.

      Abstract

      Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation.
      Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hotamisligil G.S.
        • Arner P.
        • Caro J.F.
        • et al.
        Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.
        J. Clin. Invest. 1995; 95: 2409-2415
        • Weisberg S.P.
        • McCann D.
        • Desai M.
        • et al.
        Obesity is associated with macrophage accumulation in adipose tissue.
        J. Clin. Invest. 2003; 112: 1796-1808
        • Xu H.
        • Barnes G.T.
        • Yang Q.
        • et al.
        Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.
        J. Clin. Invest. 2003; 112: 1821-1830
        • Cinti S.
        • Mitchell G.
        • Barbatelli G.
        • et al.
        Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans.
        J. Lipid Res. 2005; 46: 2347-2355
        • Yu R.
        • Kim C.S.
        • Kwon B.S.
        • et al.
        Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice.
        Obes. (Silver Spring). 2006; 14: 1353-1362
        • Kaplan J.L.
        • Marshall M.A.
        • McSkimming C.
        • et al.
        Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue.
        Mol. Metab. 2015; 4: 779-794
        • Bories G.
        • Caiazzo R.
        • Derudas B.
        • et al.
        Impaired alternative macrophage differentiation of peripheral blood mononuclear cells from obese subjects.
        Diab Vasc. Dis. Res. 2012; 9: 189-195
        • Alkhouri N.
        • Gornicka A.
        • Berk M.P.
        • et al.
        Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis.
        J. Biol. Chem. 2010; 285: 3428-3438
        • Nieto-Vazquez I.
        • Fernández-Veledo S.
        • Krämer D.K.
        • et al.
        Insulin resistance associated to obesity: the link TNF-alpha.
        Arch. Physiol. Biochem. 2008; 114: 183-194
        • Guilherme A.
        • Virbasius J.V.
        • Puri V.
        • et al.
        Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes.
        Nat. Rev. Mol. Cell Biol. 2008; 9: 367-377
        • Fox C.S.
        • Massaro J.M.
        • Hoffmann U.
        • et al.
        Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study.
        Circulation. 2007; 116: 39-48
        • DeFronzo R.A.
        Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009.
        Diabetologia. 2010; 53: 1270-1287
        • Litwin S.E.
        Normal weight obesity: is bigger really badder?.
        Circ. Cardiovasc Imaging. 2012; 5: 286-288
        • Ding C.
        • Chan Z.
        • Magkos F.
        Lean, but not healthy: the ‘metabolically obese, normal-weight’ phenotype.
        Curr. Opin. Clin. Nutr. Metab. Care. 2016; 19: 408-417
        • Wang B.
        • Zhuang R.
        • Luo X.
        • et al.
        Prevalence of metabolically healthy obese and metabolically obese but normal weight in adults worldwide: a meta-analysis.
        Horm. Metab. Res. 2015; 47: 839-845
        • Iacobellis G.
        • Willens H.J.
        Echocardiographic epicardial fat: a review of research and clinical applications.
        J. Am. Soc. Echocardiogr. 2009; 22: 1311-1319
        • Talman A.H.
        • Psaltis P.J.
        • Cameron J.D.
        • et al.
        Epicardial adipose tissue: far more than a fat depot.
        Cardiovasc Diagn Ther. 2014; 4: 416-429
        • van Dam A.D.
        • Boon M.R.
        • Berbée J.F.
        • et al.
        Targeting white, brown and perivascular adipose tissue in atherosclerosis development.
        Eur. J. Pharmacol. 2017; ([Epub ahead of print])https://doi.org/10.1016/j.ejphar.2017.03.051
        • Iacobellis G.
        • Sharma A.M.
        Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome.
        Curr. Pharm. Des. 2007; 13: 2180-2184
        • Iacobellis G.
        Epicardial and pericardial fat: close, but very different.
        Obes. (Silver Spring). 2009; 17 (author reply 626–7): 625
        • Sironi A.M.
        • Gastaldelli A.
        • Mari A.
        • et al.
        Visceral fat in hypertension: influence on insulin resistance and beta-cell function.
        Hypertension. 2004; 44: 127-133
        • Cheung L.
        • Gertow J.
        • Werngren O.
        • et al.
        Human mediastinal adipose tissue displays certain characteristics of brown fat.
        Nutr. Diabetes. 2013; 3: e66https://doi.org/10.1038/nutd.2013.6
        • Wheeler G.L.
        • Shi R.
        • Beck S.R.
        • et al.
        Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families.
        Invest. Radiol. 2005; 40: 97-101
        • Nelson A.J.
        • Worthley M.I.
        • Psaltis P.J.
        • et al.
        Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume.
        J. Cardiovasc Magn. Reson. 2009; 11: 15https://doi.org/10.1186/1532-429X-11-15
        • Rabkin S.W.
        Epicardial fat: properties, function and relationship to obesity.
        Obes. Rev. 2007; 8: 253-261
        • Sacks H.S.
        • Fain J.N.
        • Bahouth S.W.
        • et al.
        Adult epicardial fat exhibits beige features.
        J. Clin. Endocrinol. Metab. 2013; 98: E1448-E1455
        • Sacks H.S.
        • Fain J.N.
        Human epicardial adipose tissue: a review.
        Am. Heart J. 2007; 153: 907-917
        • Chang L.
        • Villacorta L.
        • Li R.
        • et al.
        Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis.
        Circulation. 2012; 126: 1067-1078
        • Padilla J.
        • Jenkins N.T.
        • Vieira-Potter V.J.
        • et al.
        Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues.
        Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 304: R543-R552
        • Henrichot E.
        • Juge-Aubry C.E.
        • Pernin A.
        • et al.
        Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis?.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 2594-2599
        • Police S.B.
        • Thatcher S.E.
        • Charnigo R.
        • et al.
        Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation.
        Arterioscler. Thromb. Vasc. Biol. 2009; 29: 1458-1464
        • Yudkin J.S.
        • Eringa E.
        • Stehouwer C.D.
        “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease.
        Lancet. 2005; 365: 1817-1820
        • Marchington J.M.
        • Pond C.M.
        Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro.
        Int. J. Obes. 1990; 14: 1013-1022
        • Lembo G.
        • Vecchione C.
        • Fratta L.
        • et al.
        Leptin induces direct vasodilation through distinct endothelial mechanisms.
        Diabetes. 2000; 49: 293-297
        • Greenstein A.S.
        • Khavandi K.
        • Withers S.B.
        • et al.
        Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients.
        Circulation. 2009; 119: 1661-1670
        • Greulich S.
        • Chen W.J.
        • Maxhera B.
        • et al.
        Cardioprotective properties of omentin-1 in type 2 diabetes: evidence from clinical and in vitro studies.
        PLoS One. 2013; 8: e59697
        • Jaikanth C.
        • Gurumurthy P.
        • Cherian K.M.
        • et al.
        Emergence of omentin as a pleiotropic adipocytokine.
        Exp. Clin. Endocrinol. Diabetes. 2013; 121: 377-383
        • Margaritis M.
        • Antonopoulos A.S.
        • Digby J.
        • et al.
        Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels.
        Circulation. 2013; 127: 2209-2221
        • Ouchi N.
        • Walsh K.
        Adiponectin as an anti-inflammatory factor.
        Clin. Chim. Acta. 2007; 380: 24-30
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • et al.
        Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.
        Circulation. 2000; 102: 1296-1301
        • Goldstein B.J.
        • Scalia R.G.
        • Ma X.L.
        Protective vascular and myocardial effects of adiponectin.
        Nat. Clin. Pract. Cardiovasc Med. 2009; 6: 27-35
        • Arita Y.
        • Kihara S.
        • Ouchi N.
        • et al.
        Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell.
        Circulation. 2002; 105: 2893-2898
        • Takaoka M.
        • Nagata D.
        • Kihara S.
        • et al.
        Periadventitial adipose tissue plays a critical role in vascular remodeling.
        Circ. Res. 2009; 105: 906-911
        • Ding M.
        • Xie Y.
        • Wagner R.J.
        • et al.
        Adiponectin induces vascular smooth muscle cell differentiation via repression of mammalian target of rapamycin complex 1 and FoxO4.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 1403-1410
        • Chatterjee T.K.
        • Aronow B.J.
        • Tong W.S.
        • et al.
        Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis.
        Physiol. Genomics. 2013; 45: 697-709
        • Omar A.
        • Chatterjee T.K.
        • Tang Y.
        • et al.
        Proinflammatory phenotype of perivascular adipocytes.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1631-1636
        • Bhattacharya I.
        • Drägert K.
        • Albert V.
        • et al.
        Rictor in perivascular adipose tissue controls vascular function by regulating inflammatory molecule expression.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 2105-2111
        • Marchesi C.
        • Ebrahimian T.
        • Angulo O.
        • et al.
        Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome.
        Hypertension. 2009; 54: 1384-1392
        • Iacobellis G.
        • Pistilli D.
        • Gucciardo M.
        • et al.
        Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease.
        Cytokine. 2005; 29: 251-255
        • Karastergiou K.
        • Evans I.
        • Ogston N.
        • et al.
        Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1340-1346
        • Langheim S.
        • Dreas L.
        • Veschini L.
        • et al.
        Increased expression and secretion of resistin in epicardial adipose tissue of patients with acute coronary syndrome.
        Am. J. Physiol. Heart Circ. Physiol. 2010; 298: H746-H753
        • Fitzgibbons T.P.
        • Czech M.P.
        Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations.
        J. Am. Heart Assoc. 2014; 3: e000582
        • Greulich S.
        • Maxhera B.
        • Vandenplas G.
        • et al.
        Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction.
        Circulation. 2012; 126: 2324-2334
        • Owen M.K.
        • Witzmann F.A.
        • McKenney M.L.
        • et al.
        Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity.
        Circulation. 2013; 128: 9-18
        • Noblet J.N.
        • Owen M.K.
        • Goodwill A.G.
        • et al.
        Lean and obese coronary perivascular adipose tissue impairs vasodilation via differential inhibition of vascular smooth muscle K+ channels.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 1393-1400
        • Hedegaard E.R.
        • Nielsen B.D.
        • Kun A.
        • et al.
        KV 7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries.
        Br. J. Pharmacol. 2014; 171: 69-82
        • Wan F.
        • Letavernier E.
        • Abid S.
        • et al.
        Extracellular calpain/calpastatin balance is involved in the progression of pulmonary hypertension.
        Am. J. Respir. Cell Mol. Biol. 2016 Mar 14; ([Epub ahead of print])https://doi.org/10.1165/rcmb.2015-0257OC
        • Chatterjee T.K.
        • Stoll L.L.
        • Denning G.M.
        • et al.
        Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding.
        Circ. Res. 2009; 104: 541-549
        • Hirata Y.
        • Tabata M.
        • Kurobe H.
        • et al.
        Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue.
        J. Am. Coll. Cardiol. 2011; 58: 248-255
        • Prieur X.
        • Mok C.Y.
        • Velagapudi V.R.
        • et al.
        Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice.
        Diabetes. 2011; 60: 797-809
        • Mazurek T.
        • Zhang L.
        • Zalewski A.
        • et al.
        Human epicardial adipose tissue is a source of inflammatory mediators.
        Circulation. 2003; 108: 2460-2466
        • Baker A.R.
        • Silva N.F.
        • Quinn D.W.
        • et al.
        Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease.
        Cardiovasc Diabetol. 2006; 13: 1
        • Cheng K.H.
        • Chu C.S.
        • Lee K.T.
        • et al.
        Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease.
        Int. J. Obes. (Lond). 2008; 32: 268-274
        • Ruan C.C.
        • Zhu D.L.
        • Chen Q.Z.
        • et al.
        Perivascular adipose tissue-derived complement 3 is required for adventitial fibroblast functions and adventitial remodeling in deoxycorticosterone acetate-salt hypertensive rats.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 2568-2574
        • Ruan C.C.
        • Ge Q.
        • Li Y.
        • et al.
        Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 598-606
        • Wang P.
        • Xu T.Y.
        • Guan Y.F.
        • et al.
        Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide.
        Cardiovasc Res. 2009; 81: 370-380
        • Schroeter M.R.
        • Leifheit-Nestler M.
        • Hubert A.
        • et al.
        Leptin promotes neointima formation and smooth muscle cell proliferation via NADPH oxidase activation and signalling in caveolin-rich microdomains.
        Cardiovasc Res. 2013; 99: 555-565
        • Tian Z.
        • Miyata K.
        • Tazume H.
        • et al.
        Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury.
        J. Mol. Cell Cardiol. 2013; 57: 1-12
        • Shimizu I.
        • Walsh K.
        Vascular remodeling mediated by Angptl2 produced from perivascular adipose tissue.
        J. Mol. Cell Cardiol. 2013; 59: 176-178
        • Venteclef N.
        • Guglielmi V.
        • Balse E.
        • et al.
        Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines.
        Eur. Heart J. 2015; 36: 795-805a
        • Hatem S.N.
        • Sanders P.
        Epicardial adipose tissue and atrial fibrillation.
        Cardiovasc Res. 2014; 102: 205-213
        • Dutour A.
        • Achard V.
        • Sell H.
        • et al.
        Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with coronary artery disease.
        J. Clin. Endocrinol. Metab. 2010; 95: 963-967
        • Boekholdt S.M.
        • Keller T.T.
        • Wareham N.J.
        • et al.
        Serum levels of type II secretory phospholipase A2 and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk prospective population study.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 839-846
        • Maiolino G.
        • Pedon L.
        • Cesari M.
        • et al.
        Lipoprotein-associated phospholipase A2 activity predicts cardiovascular events in high risk coronary artery disease patients.
        PLoS One. 2012; 7: e48171
        • Iacobellis G.
        • Assael F.
        • Ribaudo M.C.
        • et al.
        Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction.
        Obes. Res. 2003; 11: 304-310
        • Iacobellis G.
        • Pellicelli A.M.
        • Grisorio B.
        • et al.
        Relation of epicardial fat and alanine aminotransferase in subjects with increased visceral fat.
        Obes. (Silver Spring). 2008; 16: 179-183
        • Wang T.D.
        • Lee W.J.
        • Shih F.Y.
        • et al.
        Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat.
        J. Clin. Endocrinol. Metab. 2009; 94: 662-669
        • Kitagawa T.
        • Yamamoto H.
        • Sentani K.
        • et al.
        The relationship between inflammation and neoangiogenesis of epicardial adipose tissue and coronary atherosclerosis based on computed tomography analysis.
        Atherosclerosis. 2015; 243: 293-299
        • Tsushima H.
        • Yamamoto H.
        • Kitagawa T.
        • et al.
        Association of epicardial and abdominal visceral adipose tissue with coronary atherosclerosis in patients with a coronary artery calcium score of zero.
        Circ. J. 2015; 79: 1084-1091
        • Britton K.A.
        • Pedley A.
        • Massaro J.M.
        • et al.
        Prevalence, distribution, and risk factor correlates of high thoracic periaortic fat in the Framingham Heart Study.
        J. Am. Heart Assoc. 2012; 1: e004200
        • Iacobellis G.
        • Singh N.
        • Wharton S.
        • et al.
        Substantial changes in epicardial fat thickness after weight loss in severely obese subjects.
        Obes. (Silver Spring). 2008; 16: 1693-1697
        • Kim M.K.
        • Tanaka K.
        • Kim M.J.
        • et al.
        Comparison of epicardial, abdominal and regional fat compartments in response to weight loss.
        Nutr. Metab. Cardiovasc Dis. 2009; 19: 760-766
        • Iacobellis G.
        • Willens H.J.
        • Barbaro G.
        • et al.
        Threshold values of high-risk echocardiographic epicardial fat thickness.
        Obes. (Silver Spring). 2008; 16: 887-892
        • Liu J.
        • Fox C.S.
        • Hickson D.
        • et al.
        Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: the Jackson heart study.
        Diabetes Care. 2010; 33: 1635-1639
        • Rosenquist K.J.
        • Pedley A.
        • Massaro J.M.
        • et al.
        Visceral and subcutaneous fat quality and cardiometabolic risk.
        JACC Cardiovasc Imaging. 2013; 6: 762-771
        • Lim S.
        • Meigs J.B.
        Ectopic fat and cardiometabolic and vascular risk.
        Int. J. Cardiol. 2013; 169: 166-176
        • Iacobellis G.
        • Ribaudo M.C.
        • Assael F.
        • et al.
        Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk.
        J. Clin. Endocrinol. Metab. 2003; 88: 5163-5168
        • Greif M.
        • Becker A.
        • von Ziegler F.
        • et al.
        Pericardial adipose tissue determined by dual CT is a risk factor coronary atherosclerosis.
        Artehrioscler Thromb. Vasc. Biol. 2009; 29: 781-786
        • Iacobellis G.
        • Sharma A.M.
        • Pelicelli A.M.
        • et al.
        Epicardial adipose tissue is related to carotid intima-media thickness and visceral adiposity in HIV-infected patients with highly active antiretroviral therapy-associated metabolic syndrome.
        Curr. HIV Res. 2007; 5: 275-279
        • Britton K.A.
        • Massaro J.M.
        • Murabito J.M.
        • et al.
        Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality.
        J. Am. Coll. Cardiol. 2013; 62: 921-925
        • Rosito G.A.
        • Nassaro J.M.
        • Hoffmann U.
        • et al.
        Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study.
        Circulation. 2008; 117: 605-613
        • Nakanishi R.
        • Rajani R.
        • Cheng V.Y.
        • et al.
        Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT.
        Atherosclerosis. 2011; 218: 363-368
        • Otaki Y.
        • Rajani R.
        • Cheng V.Y.
        • et al.
        The relationship between epicardial fat volume and incident coronary artery calcium.
        J. Cardiovasc Comput. Tomogr. 2011; 5: 310-316
        • Nalliah C.J.
        • Sanders P.
        • Kottkamp H.
        • et al.
        The role of obesity in atrial fibrillation.
        Eur. Heart J. 2016; 37: 1565-1572
        • Thanassoulis G.
        • Massaro J.M.
        • O'Donnell C.J.
        • et al.
        Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study.
        Circ. Arrhythm. Elecrophysiol. 2010; 3: 345-350
        • Batal O.
        • Schoenhagen P.
        • Shao M.
        • et al.
        Left atrial epicardial adiposity and atrial fibrillation.
        Circ. Arrhythm. Electrophysiol. 2010; 3: 230-236
        • Girerd N.
        • Scridon A.
        • Bessière F.
        • et al.
        Periatrial epicardial fat is associated with markers of endothelial dysfunction in patients with atrial fibrillation.
        PLoS One. 2013; 8: e77167
        • Yorgun H.
        • Canpolat U.
        • Aytemir K.
        • et al.
        Association of epicardial and peri-atrial adiposity with the presence and severity of non-valvular atrial fibrillation.
        Int. J. Cardiovasc Imaging. 2015; 31: 649-657
        • Canpolat U.
        • Aytemir K.
        • Yorgun H.
        • et al.
        The impact of echocardiographic epicardial fat thickness on outcomes of cryoballoon-based atrial fibrillation ablation.
        Echocardiography. 2016; 33: 821-829